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Would you jump?

Class discussion (1)...
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Bungee Jumping Model

M §D

:'II'I:
O,ke| é
H
i 5
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A :
' hmin .
M——————;——————y——
o Floor

Simplified solution to linear oscillator
equation (string length=0):

hmin — o 2Mg
k o

el

h.,in= minimum distance to surface [m]
H=distance from platform to surface[m]
M=mass of jumper [kg]

_o= number of strands in cord [-]

k.=elastic constant of material [N/m]=1.5
g= gravity constant (9.81 m/s?)
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Bungee Jumping Model

Example: a 70 Kg (M) person jumping 50 m (H) with a cord made of
30 strands (0=30 ) and elasticity k,;= 1.5 N/m
= h,_;,=? (Let’s calculate in Excel!!)

coee M E v~ +

Insert Formulas Data REEN

B Bungee

View

Page Layout

?,‘ . ‘?{’ Calibri (Body) ~+//12 v A=~ A~ = | = D [Z70 Wrap Text General ‘@\ .
B - — :
Paste ) B I U~ | S . A v = | = | = || €= | 9= Merge & Center v $ v % ) S ‘50.8 Conditional
A T Formatting
E2 . fx  =A2-2*B2*9.8/(C2*D2)
A B (€ D E
1|H M _sigma _kel _hmin
2 50 170 130 115 1=A2-2*32%9.8/(C2*D2) |
- =H - =19.5m =62 ft ,
hmln H W|U1\IVERSITY Of

k .o

el
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And now...
Would you jump?

Class discussion redux (2) ...
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On the uncertainty of life...
Monte-Carlo Uncertainty Analysis

Uncertain input factors™ when jumping?

H: U(40,60) (m, bottom variation, topo survey)
M: U(67,74) (kg, £5%, physiological)

o: U(20,40) ([-], based on vendor survey) ”
k.: U(1.475-1.525) (N/m, 5% manufacturer) ... 5

oM
ho o=H-2T8

min

(*) Input factors: anything that would change the model/system UF UNIVERSITY of

outputs (parameters, initial and boundary conditions) FLORIDA




Let’s calculate probable values for each factor and
propagate those into the h,;,, model —> Monte Carlo UA

coee M H -V ~ B Bungee
Insert Page Layout Formulas Data Review

T’ S~ 3{7 Calibri(Body) ~+ 12 ~+ A=~ A~ il — ? e —0 Wrap Text General v -
Paste ‘ B I U~ v|[& |+ A v = | = | = || €= | 9= \ rv $ (v % | D || %S| Conditional

A 2 — Formatting
E2 - fx  =A2-2*B2*9.8/(C2*D2)

A B € D E

1 H M sigma _kel _hmin
2 [s0 70 30 115 I=A2-2*32%9.8/(C2*D2) |
3 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,15 3f3-2*B3*9.8/(C3*D3)
4 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,15/=A4-2*B4*9.8/(C4*D4)
5 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,¥5 =A5-2*B5%*9.8/(C5*D5)
6 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425%,15 =A6-2*B6*9.8/(C6*D6)
7 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,15 =A7-2*B7*9.8/(C7*D7)
8 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(}¥425,15 =A8-2*B8%*9.8/(C8*D8)
9 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,15=A9-2*B9*9.8/(C9*D9)
10 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETWEEN(1425,15 =A10-2*B10*9.8/(C10*D1"
11 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBE EN(1425,15'=A11-2*B11*9.8/(C11*D1
12 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDBETAWEEN(1425,15=A12-2*B12*9.8/(C12*D1
13 =RANDBETWEEN(40,60) =RANDBETWEEN(67,74) =RANDBETWEEN(20,40) =RANDB EEN(1425,15'=A13-2*B13*9.8/(C13*D1
... X 3000 times

hmin — H_

ke

2Mg
0
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Monte-Carlo Uncertainty Analysis (UA)

Data Review

Formulas

H: U(40,60) (m, bottom variation, survey)

o Caleri@edy) iz nAS AR T = = ¢ M: U(67,74) (kg, 5%, physiological)
. [ |v| A |+ = = =
Paste & B I | Y M) i === o: U(20,40) (no. based on vendor survey)
E2 . fx  =A2-2*B2*9.8/(C2*D2) ke:U(1.475-1.525) (5% manufacturer)
A B C D E
1 |H M sigma kel hmin
2 50 70 30 1.5| 19.5111111I
3 52 68 24 1.5090 15.1985863
4 58 68 25 1.4280 20.6666667
5 56 74 40 1.5080 31.9549072
6 40 69 38 1.4350 15.198973
Negative value =
153 56 68 33 1.5560 30.0437797
154 54 73 36 1.4870 27.2720616
155 54 73 25 1.4750 15.1986441
156 59 69 32 1.5330 31.4315068 e o
157 54 71 20 1.5380 8.75942783
158 41 70 20 1.5360 -3.6614583
159 43 72 39 1.4320 17.7314138
160 50 71 30 1.4940 18.951361

... X 3000 times

UF

UNIVERSITY of

FLORIDA




Monte-Carlo Uncertainty Analysis (UA)

Probable values of h;,

120

100

Frequency
(@) (00]
o o

I
o

20

23.38

26.53
29.68

20.22
32.83

mm Frequency —=—Cumulative %

120.00%
100.00%
80.00%
60.00%
40.00%

20.00%

p(hmin<o)z 3%
1 out 33 jumpers!!

UF [FLORIDA




And now...
Would you jump?

Class discussion redux (3)...

YYYYYYYYYY of
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Why so much uncertainty?

 What are the important factors controlling it?

* Can we reduce/control uncertainty through
management/policy actions?

e Can we control/reduce uncertainty in complex
environmental systems, with many inputs
where the response is more that the sum of
the individual components (interactions)?

UF [FLORIDA




Global Sensitivity & Uncertainty Analysis (GSUA)

Some definitions:

 Mathematical models are built in the presence of
uncertainties of various types (input variability,
model algorithms, model calibration data, and
scale).

* Uncertainty analysis is used to propagate all these
uncertainties, using the model, onto the model
output of interest

* Sensitivity analysis is used to determine the
strength of the relation between a given uncertain

input and the output

UF [FLORIDA




Global Sensitivity/Uncertainty Analysis

WHY/WHEN? | Apportions output variance into input factors

< GLOBAL SENSITIVITY ANALYSIS

FACTORS _>—> OUTPUTS

UNCERTAINTY ANALYSIS > HOW MUCH?
Propagates input factor variability into output UF ‘ UNIVERSITY of |




Classical SA approach - derivative local OAT

* Often model sensitivity is expressed as a simple
derivative of model output (y) with respect to the
variation of a single input factor (x;):

— S =9dy/adx; (absolute sensitivity)
— S'= (x,,/y)(0y/0x;)  (relative sensitivity w/means)
— 5°=(0,;/5,)(dy/dx;) (relative sensitivity w/uncertainty)
* While the last two measures are unit independent,

G, requires an uncertainty analysis of the model
output.

* These derivative measures can be efficiently
computed (direct differentiation of model
equ?tlons, automatic differentiation algorithmes,
etc.).

* Local, One-factor-At-a-Time (OAT). UF UF{BEﬁ)A




 However, these measures only provide local
information of one-factor-at-a-time (OAT). Often the
derivative is non-linear.

(a
0.1 ;

%
o 0.08
Simple 2-parameter reversible 2 0.06
. . o]
chemical reaction. Values of local © 0.04] ’
sensitivity indexes: (a) absolute; (b) § 0.02 o
e -7 e -

bottom pseudoglobal or

0 P A 1 1 ! ! L 1 I
0 0.05 0.1 0.15 0.2 025 0.3 0.35 0.4 0.45 0.5

normalized by o,/ o)) g - input range
C 1 T T T T
3
g 0.8
‘= 0.6r
0
o 04-
| - L7
o 02+ .7 — k1 |
o . S
o 0 | 1 L 1 | I | 1 |
- 0 0.05 0.1 0.15 0.2 025 03 03 04 045 05

* What happens to the more common problem of a
model driven by more than one factor with varying

effects across the input range? UNIVERSITY of
UF 'FLORIDA




Dependency of sensitivity with time

0.9 0.9
088 ‘., 0.88 M
—_ ‘Mo . P P L .
8 0.86 W S 0.86 « st eC.
; 5, g e
< 0.84 N X < 0.84 o fes L, 0
< .’. < é .. ° [} Y
0.82 . 0.82 . . °
k; ~“N(3,0.3)
~ 0.8 : : l 0.8 . K
k1™N(3,1.0) > 25 8 35 4 0 > 4 6
k1 k_1
0.8 0.8
0.7 . . . 0.7 . ..
) ® :.‘:. .o.°. : ) .o..o..:.o. .'
E 0.6 ‘ E'j', 0.6 .‘.,-;,.o'
<% " .o..o. * < Q.O:.o... g
0.5 o te e 0.5 Sl
0.4 ' , , 0.4

2 2.5 3 3.5 4 0
k1

2 4 6
k1
Scatter plots of [A] versus kq,k, at time t =0.3 and t = 0.06. k; appeUFt&%‘i\E%ﬁ%f
k., at t = 0.06, while the reverse is true at t = 0.3 A




Global Sensitivity Analysis

* Local vs. global sensitivity analysis (SA)

_ Local SA (classic) | Global SA \

Model Linear No -
Monotonic assumptions Z
additive 3
No. of factors O-A-T All together g
Factor range Local Whole PDF
(derivative) , :
Interactions  No Yes © DX se™™ Input factor, Xi

value, X

UF [FLORIDA




Global Sensitivity Analysis

HOW MUCH, WHY, WHEN...
surprise the analyst,

find technical errors in the model,
gauge model adequacy and relevance,

identify critical regions in the space of the inputs
(including interactions),

establish priorities for research,
simplify models,

verify if policy options make a difference or can be
distinguished.

anticipate (prepare against) falsifications of the analysis

eee UNIVERSITY of
Adpt. from [Saltelli, 2006, SAMO Venice] UF FLORIDA




« Potentially large input set.

How to handle the model evaluation with many inputs
at the time?

« Effect of model structure complexity

on sensitivity of inputs.

Often we can have several choices of model
formulation, each adding, removing or simply
changing the conceptual basis of existing
components. What is the effect the model output and
other inputs in the model of this changes in the model

structure? UNIVERSITY of
UF [FLORIDA




GSUA evaluation framework

For model with large number of factors a two-step
global process is recommended:

1. Qualitative Screening with limited number of simulation (p.e;j.
Morris Method)

Ranking and selection of important factors (u*); Presence of
interactions (o)

2. Quantitative Variance-based method: (i.e. Extended FAST,
Sobol, etc.)

First order indexes (S;, direct effects); Total order (S,
interactions) + Uncertainty analysis (!)

UF [FLORIDA




GSUA Evaluation Framework

Intput 1

Input 2

Input k

Global UNCERTAINTY Analysis (GUA)

| Model input factor PDFs

GLOBALLY SAMPLED INPUT FACTORS

C_ MODEL >

Model structure
control

- A

MODEL OUTPUTS

Output 1

Output 2

<« - I

Output n

UNCERTAINTY

=)

V3

—y SENSITIVITY

J

Feedbacks on model factors

Global SENSITIVITY Analysis (GSA)

High Performance Computing

(Y of

-—— -———-DA




Screening: Morris Method

Morris (1991) proposed conducting individually
randomized experiments that evaluate the effect of
changing one input at a time globally.

Each input assumes a discrete number of values, called
levels, that are selected from within an allocated
probability density function (PDF) for the inputs.

Uses few simulations to map relative sensitivity

It’s Qualitative, not quantitative (low sampling). Provides
an early indication of the importance (ranking) of first
order effects vs. interactions

|dentifies a subset of more important inputs (could be
. . . UNIVERSITY of
followed by quantitative analysis) 'U'F FLORIDA




Screening: Morris Method

The key to Morris sampling is that it is based on the “unit hypercube”, i.e. every
input factor x; is always sampled from a uniform distribution U[0,1], regardless
of its actual distribution (like normal, lognormal, beta, etc.) assigned to that
factor (in the “.fac” file). The reason for this is that the unit uniform distribution
has the very nice property that the value of the factor is equal to its cumulative

probability value:
A

!

p levels (p=4)

A=2/3 /
|

Frequency, p

'/

Cum. Probability, P(x) —
|

0

>

|

1328 1 Input Xi 0

>

1 Input Xi

Notice that to limit sampling, the U[0,1] is only sampled at a few places (“levels”,
where p=number of levels), and the sampling jump A across levels is

A=p/(2 p-2) (i.e.two levels in each jump). UF

UNIVERSITY of

FLORIDA




Screening: Morris Method

The “unit uniform” is a nice trick! It means that we can sample all the x;

S factors (/=1,kno. factors) at once from a Cartesian A-dimensional

hyperspace, each between {0,1}, and then back-transform them into their
actual value based on the inverse probability function of the actual
distribution assigned to that value. This is,

Inpug factor 1

Sample U(0,1) = P(x) —> x;= P-1(x)

where P(x) is the actual cumulative probability Xp)

assigned to the factor (normal, lognormal, etc.)

and P-1(x) is inverse probability function for that

distribution. ot
o

The sampling strategy on the k-dimensional unit-hypercube space is to

follow a ‘trajectory” with as many “turns” as dimensions (), each turn

modifying by a jump A in only one of the coordinates. The input space is

then evenly sampled with a number of trajectories (#) with as much

separation from each other as possible. UF UNIVERSITY of

FLORIDA

X{2) Inpufffactor 2

X(0) L <

Number of model simulations N=r ( k+ 1)
Example: k=20, r=10, N =210




Screening: Morris Method

* The elementary effects (EE;) are calculated for each factor x;
as derivatives for each jump A in the trajectories,

EE; = [y(X1,X2...Xi,Xj 11, .- Xk) — Y(X1,X2...X + A, X1, ... X)] /A

* For each input x;, two sensitivity measures are proposed by
Morris (1991):

1. u:the mean of EE;, which estimates the overall direct effect of the
input on a given output

2. o :the standard deviation of EE;, which estimates the higher-order
characteristics of the input (such as curvatures and interactions).

* Since the model output could be non-monotonic,
Campolongo and others (2003) suggested considering the
absolute values of the elementary effects, u*, to avoid the
effects of canceling EE; of opposite signs.

UF [FLORIDA




Screening: Morris Method

* A very nice feature of Morris is the graphical representation of the factor
importance in the “Morris plane” where input factors are plotted on (", 6,)
axes. U* = average of the | EE;|

* The factors closest the origin are less influential !!

input. Its
importance '

s

Dry season elephant populatic‘,)h
Reglon 1

depends some on
the values of other
factors

1,500 - B
' SWSeason .-
EleMarula ¢ ,WOOdyF|re
£ 1,250 - MarulaEle 5 E}eWater
.I\/IopaneE'Ie SW,A

«» 1,000 - I IR A Y
g : ,/ 1 : |:
g 0 GrassFlre i * Very important
2 ' e | ' factor. Its
—: Less important g importance

Interaction

depends heavily |
on the values of . !

I
I
1
1
T

1
Wl —1

750 1,000 1, 250 1,500
u-Direct effects

Importance (ranking) ) UF ‘ UF\]l\B]iilifj)fA

Kiker, Mufioz-Carpena et al., Drivers of elefant population in thr Kruger National Park (So. Africa)

other inputs




HDMR™: Variance decomposition
Fourier Amplitude Sensitivity Analysis Test (FAST)

e FAST, in a nutshell, decomposes the output (Y) variance V =
sy2 using spectral analysis, sothat V=V, +V, +...+V, +R,
where V; is that part of the variance of Y that can be
attributed to x; alone, k is the number of uncertain factors,
and R is a residual. Thus, S; = V,/V can be taken as a measure
of the sensitivity of Y with respect to x..

© VIY)=3Vi+3Vy+3 Vy+..+ Vs

* FAST is a GSA method which works irrespective of the degree
of linearity or additivity of the model.

UF [FLORIDA

(*) HDMR: High-Dimension Model Representation




HDRM™: Variance decomposition
Fourier Amplitude Sensitivity Analysis Test (FAST)

Interactions

Output Variance, V(Y) UF I UFETERTBA

(*) HDMR: High-Dimension Model Representation




HDRM: Variance decomposition
Fourier Amplitude Sensitivity Analysis Test (FAST)

V(Y)=V,+V,+..+V, +R

V(Y) — variance of output, V; — variance due input factor X;,
k — nr of uncertain factors, R - residual

o

Number of FAST model simulations N = N = M k;

Example: k=20, N= 10240 to 20480 FLORIDA




HDRM: Variance decomposition
Fourier Amplitude Sensitivity Analysis Test (FAST)

1. S; - first-order sensitivity index: S;=V;/ V(Y)

2. Sy;) - total sensitivity index

For model with 3 inputs: A, B, and C, for input A:

St(a) = Sa + Sas + Sac + Sasc \

Sti - S; = higher order effects o

UF [FLORIDA




* Although FAST is a sound approach to the
problem, it has seen little used in the scientific
community at large.

If specific decompositions of interactions is
needed, Sobol further proposed:

Y = (X, Xy, X)) = o + 2 Fi(X)+ 2 (X, X)) oo +Fy

Number of Sobol model simulations N =N = M (2k + 2);

Example: k=20, N= 10,752 to 172,032 (typical 21504) UF FLORIDA




* Using variance-based techniques in numerical
experiments is the same as applying ANOVA
(analysis of variance) in experimental design,
as the same variance decomposition scheme
holds in the two cases.

* One could hence say that modelers are
converging with experimentalists treating Y,
the outcome of a numerical experiment, as an
experimental outcome whose relation to the
control variables, the input factors, can be
assessed on the basis of statistical inference.

[Saltelli et al., 1999] UF UF\]I,BIEITBA




Choice of SA methods: Tradeoffs

N. of factors ]
Fractional

Factorial s —+—+

~100

Local
(AD' X Hap]

(%20 (% +axp)

Bayesian

Variance

~1h  cPU time

|_/\_ ——— perrun

xl xl x' x‘

Assumptions

on the model
Fy

SRC

Bayesian

Morris

Machine Analyst’s

time

Local (AD)

Var. Based,

time

Bayesian
Local (AD)

SRC
Var. Based

Salteli et al, 2005)

UF
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Let’s find out the most important
input factors controlling the
bungee jumping risk
... Morris GSA

UF [FLORIDA




Simlab GSA teaching software

EU-JRC Ispra, Saltelli et al

File Demo Help

tatistical Pre Processor

{+ “New Sample Generation

N

Configure Generate I

y

{"-Load sample File

I

¢~ Import external Sample file

I

Current Configuration

Mo configuration loaded

[»]

Yisualize

AN 2

“ Madel Execution

Select Model

N\

Configure (Monte Carlo)

rﬁatistical Posk Processor %

Analyse (LG/56) \|

Start (Monke Carlo)

See L!Zu;{

Abark

YWwelcome to SimLab sul‘twary

Inputs
Sampling

Model Outputs
(import results)

UF
Measures ‘

UNIVERSITY of
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GSA bungee jumping
Apply GSA methods of Morris (and FAST). Follow

these steps:

1. In SimLab (EU-JRC) teaching software define
the 4 input factors (H, M, o, k)

2. Copy the inputs sample matrix into the Bungee
Excel sheet and calculate the model output
vector (h...).

3. Bring back the input matrix and output vector
and process the results in Simlab

UF [FLORIDA




GSA Morris Results: Bungee jumping

Selection of important factors (1*); Presence of interactions (o)

\ 4

1 s o, sigma 0<\
' Important
. factors
n
‘g 2.5
i) & M
g © 2 E!'x:
e Bridg A
e 0,kel
;
! 5
'TP.:*
& S

®
10 15 20

25
Unimportant Importange (influencial) ) UNIVERSITY of
factors UF 'FLORIDA




Risk control: Monte Carlo Filtering

Discussion:

* How could we reduce risk when jumping?

* What factor(s) should we design our risk control
management strategy around?

e How?

UF [FLORIDA




Risk control: Monte Carlo Filtering

Let’s MCF the UA outputs as “non-behavioral” (h,,,<0)
and “behavioral” (h,,;, > 0) and “map” the most important
(and manageable) input factor (o).

o000 g - @ 3_Class_bu
i Insert Page Layout Formulas Data Review View
Copy the h,,, values from
the Uncertainty Analysis L‘D' . c?é Calibri (Body) +|[12 +|[A= av| [= = 2]~ 57 Wrap Text
sheet Paste @ B|I Ul[EM[S A (= = =]l = Merge & Center
Paste “as values” into a E1 : £ hmin (m)
new sheet A B c D E F G H | J
. . _:l_]l-l (m) M (Kg) sigma kel |hmin (m)]vY.|‘ ® hmin (m)
Filter the data in two il 44 70 20 1.458 -3.10
a2 44 73 21 1523 078 Sort
subsets (hmin <0and hmin < % :g ;5; ;[1) i':ig :;'22 . 23 Ascending 24 Descending
O)] 121 4 74 21 1.461 5.32||E STl None o
143 45 72 20 1471 302
Copy each of the subsets == 42 73 20 1456 718 Filter
) 158 40 72 21 1.546 3.5 None
into another spreadsheet 72 P 67 0 147 an
. 183 | 42 73 21 1.563 -1.64 Less Than or Equal To E 0 M
and create histograms for =& 23 68 20 153 080 Omi o
294 a1 70 20 1.495 493
o from each subset. 315 a 67 20 1482 458 Choose One B -
325 40 72 23 1.49 122
329 40 72 23 1.47 178 Q
346 ) 71 20 1.469 5.41
369 a 69 2 1473 0.78 {electAll)
392 41 68 20 1.469 441 -9.66
471

40 72 24 1.442 -0.82 -8.78




Risk control: Monte Carlo Filtering

Monte Carlo Filtering Kolmogorov-Smirnov test for difference in distributions

0.5 N
NON-BEHAVIOURAL (hmin <0) Random Line
hmin <0

{——

——BEHAVIOURAL (hmin >0)

o
N

Cuonwmlative % of
population

‘/ Statistic

Frequency
o
w

0.2
0.1
— _/ \
0 ] >
19.00 24.00 29.00 34.00 39.00 Worst (0)
: Best (100)
IIMPORTANT NPUT: Slgma
12 Monte Carlo Filtering

The Kolmogorov-Smirnov test (see Wikipedia for
calculation) is used to test if behavioral and non-
behavioural subsets are statistically different and if
so, MCF identified a candidate for an intervention

08 Dy = sup |F1(z) — Fom(2)].

Cum. Frequency
o
(e)]

hmin <0
(i.e. reduce the initial variability through some ——hmin >0
action). In our case sigma: U[25,40] o
0.2
So, h.;,, <0 only when g < 25 strands!! —
19.00 24.00 29.00 34.00 39.00

Sigma




Risk control: increase o!

Through policy, regulation and enforcement the mininum
number of bungee cord strands allowed is now

increased from 20 to 25.

Probability of hmin with sigma [25,40] (n=10 000]

250 EN Frequency —#—Cumulative % 12

200 !
0.8
|H|||.I| 0

memememememememememememememe
@@@@@@@@@@@@@@@@@@@

Frequency
-
(O
o
o
[e)}

Y
o
o

(€3]
o

p(h_. <0)<0.001%!! - 1:100,000
Traffic accident deaths - 1:32,000
“Normal” cancer rate - 1:30,000
Death by lightning strike—> 1:1,000,000

UF
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And now...
Would you jump?

Class discussion redux (4)...

YYYYYYYYYY of
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A note - SU Morris improved sampling

Researchers after Morris found that the original trajectory-based sampling
does not guarantee a uniform sampling (like on the left of the Figure).

Instead, one gets somewhat irregular sampling across the levels. Although
this irregularity does not affect most of the problems, for difficult outputs
(highly non-linear or non-continuous across the range), this implies
inaccuracies in the ranking of factors.

We propose the SU (Sampling for Uniformity) (Khare et al., 2015) (and its
enhanced version eSU that requires no oversampling, Chitale et al., 2017)
that guarantees uniformity.

This translates into accurate input ranking even for the most demanding

test functions, like those tested on Khare et al., (2015) and at a much
lower computational cost than other improved methods proposed.

»
>

A

p levels (p=4)
A=2/3
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A note - SU Morris improved sampling

 We currently only use Khare et al. (2015) eSU sampling as the
best and most efficient method for sampling with the Matlab
package
(http://abe.ufl.edu/carpena/software/SUMorris.shtml).

 We included a user interface ‘sampler.m’ to run a single
sampling or in mixed scripts (like unix) after compilation of the
Matlab program. Typical settings (recommended) for eSU are
no oversampling (1 sample), 8 levels to get a more spread
sampling across the range, 16 trajectories, and write the

outputs as a text file for later processing, i.e.
>> sampler 'bungeed.fac' 'eSU' 1 8 16 'Text'

UF [FLORIDA




A note - SU Morris improved sampling

Let’s repeat the bungee analysis with eSU in Matlab.

1. Download and uncompress the EE Sampling and EE Measures packages
from http://abe.ufl.edu/carpena/software/SUMorris.shtml

2. Copy the ‘bungee4.fac’ file in the directory EE_Sampler.

3. In Matlab, select the EE_Sampler directory and run:
>> sampler 'bungeed.fac' 'eSU' 1 8 16 'Text’

4. This produces a CSV text sample file ‘bungeed4 FacSample.sam’. Open
the file in Excel and paste the samples in the bungee spreadsheet.

5. Create a new Excel output file (‘bungeed4 outputs.xlsx’) with outputsin a
single column, and the output label in the first row (hmin).

6. Copy the files bungee4 FacSample.sam, bungeed4 outputs.xlsx and
bungee4 FacSamChar.txt (also created in the EE_sampler directory after
the run) and paste them into the EE_Measures directory.

7. In Matlab change to the EE_Measures directory and run,

>>EE SenMea Calc('bungeed4 FacSample.sam', 'bungee4 FacSamChar.txt'

, 'bungee4 outputs.xlsx') UF UNIVERSITY of
FLORIDA




A note - SU Morris improved sampling

8. The Morris plot (modified and original) are presented on the
screen during the run, the graphical (bungee4 Figl.pdf) and
text (bungee4 EE_Measures.txt) outputs are written in the
EE_Measures directory,
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The comparison of these graphs offers useful information UF FLORIDA
on dominance of interactions and monotonicity of effects.




Wrap up...

What did we learn?
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Wrap up- what did we learn?

Uncertainty —intrinsic & conditions management
decisions

Models — allow objective assessment of system
responses to inform decisions (only as good as the
model!).

Uncertainty Analysis (UA) - helps to quantify how much
uncertainty and risk associated.

Global Sensitivity Analysis (GSA) — serves to identify
important risk factors.

Monte Carlo Filtering (MCF) — allows to identify ranges
of important factors for effective policy/intervention

strategies. UF UF\iBIEfﬁ,A
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Morris SU (Sampling Uniformity) code

There two Elementary Effects (EE) packages that complement the analysis: a) EE Sampling - to
obtain the Morris samples based on a number of methods, including Sampling for Uniformity (SU);
and b) EE Measures and Plots - after running the model with the EE samples it postproceses the
results and provides Morris statistics and plots.

Download the Matlab code, sample inputs and documentation for the packages flowing the links
below:

» EE Sampling for Matlab [10kB]
» EE Measures and Plots for Matlab [10kB]

Please click on the tabs below to see the coumentation for each of the packages.

EE Sampling | EE Measures and Plots

Description

EE_Sampler_Mapper Package is a set of MATLAB functions that generates input factor samples for
the method of Elementary Effects or Morris method (Morris, 1991). The main function to run is
‘Fac_Sampler.m’ (or its simplified command line form sampler m). It generates input factor samples

UF

UNIVERSITY of

FLORIDA




