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Would	you	jump?
Class	discussion	(1)…
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Bungee	Jumping	Model
Simplified	solution	to	linear	oscillator	
equation	(string	length=0):

hmin=	minimum	distance	to	surface	[m]
H=distance	from	platform	to	surface[m]
M=mass	of	jumper	[kg]
σ=	number	of	strands	in	cord	[-]
kel=elastic	constant	of	material	[N/m]≈1.5
g=	gravity	constant	(9.81	m/s2)

hmin = H − 2Mg
kelσ

M

σ,	kel

Floor
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Bungee	Jumping	Model
Example:	a	70	Kg	(M)	person	jumping	50	m	(H)	with	a	cord	made	of	
30	strands	(σ=30	)	and	elasticity	kel=		1.5	N/m
à hmin =	?			(Let’s	calculate	in	Excel!!)

hmin = H − 2Mg
kelσ

=	19.5	m	=	62	ft
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And	now…
Would	you	jump?
Class	discussion	redux	(2)	…
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On	the	uncertainty	of	life…
Monte-Carlo	Uncertainty	Analysis

Uncertain	input	factors* when	jumping?

• H:	U(40,60)	(m,	bottom	variation,	topo	survey)
• M:	U(67,74)	(kg,	±5%,	physiological)
• σ:	U(20,40)	([-],	based	on	vendor	survey)
• kel:	U(1.475-1.525)	(N/m,	5%	manufacturer)

hmin = H − 2Mg
kelσ

(*)	Input	factors:	anything	that	would	change	the	model/system	
outputs	(parameters,	initial	and	boundary	conditions)
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Let’s	calculate	probable	values	for	each	factor	and	
propagate	those	into	the	hmin model	–>	Monte	Carlo		UA

…	x	3000	times
hmin = H − 2Mg

kelσ
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…	x	3000	times

… Negative	value	=

✟!!

H:	U(40,60)	(m,	bottom	variation,	survey)
M:	U(67,74)	(kg,	±5%,	physiological)
σ:	U(20,40)	(no.	based	on	vendor	survey)
kel:U(1.475-1.525)	(5%	manufacturer)

Monte-Carlo Uncertainty	Analysis	(UA)
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Monte-Carlo Uncertainty	Analysis	(UA)
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And	now…
Would	you	jump?
Class	discussion	redux	(3)…
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Why	so	much	uncertainty?

• What	are	the	important	factors controlling	it?
• Can	we	reduce/control	uncertainty	through	
management/policy	actions?

• Can	we	control/reduce	uncertainty	in	complex	
environmental	systems,	with	many	inputs	
where	the	response	is	more	that	the	sum	of	
the	individual	components	(interactions)?
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Some	definitions:
• Mathematical	models	are	built	in	the	presence	of	
uncertainties	of	various	types	(input	variability,	
model	algorithms,	model	calibration	data,	and	
scale).

• Uncertainty	analysis is	used	to	propagate	all	these	
uncertainties,	using	the	model,	onto	the	model	
output	of	interest

• Sensitivity	analysis is	used	to	determine	the	
strength	of	the	relation	between	a	given	uncertain	
input	and	the	output

Global	Sensitivity	&	Uncertainty	Analysis	(GSUA)
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HOW	MUCH?

WHY/WHEN?
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• Often	model	sensitivity	is	expressed	as	a	simple	
derivative	of	model	output	(y)	with	respect	to	the	
variation	of	a	single	input	factor	(xi):
– S	=	∂y/∂xi (absolute	sensitivity)
– Sr=	(xm/ym)(∂y/∂xi) (relative	sensitivity	w/means)
– Ss=(sxi/sy)(∂y/∂xi)(relative	sensitivity	w/uncertainty)

• While	the	last	two	measures	are	unit	independent,	
sy requires	an	uncertainty	analysis	of	the	model	
output.

• These	derivative	measures	can	be	efficiently	
computed	(direct	differentiation	of	model	
equations,	automatic	differentiation	algorithms,	
etc.).

• Local,	One-factor-At-a-Time	(OAT).

Classical	SA	approach	- derivative	local	OAT
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• However,	these	measures	only	provide	local
information	of	one-factor-at-a-time	(OAT).	Often	the	
derivative	is	non-linear.	

• What	happens	to	the	more	common	problem	of	a	
model	driven	by	more	than	one	factor	with	varying	
effects	across	the	input	range?

Simple	2-parameter	reversible	
chemical	reaction.	Values	of	local	
sensitivity	indexes:	(a)	absolute;	(b)	
bottom	pseudoglobal or	
normalized	by	ski/	s[A]) input	range
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Scatter	plots	of	[A]	versus	k1,k-1 at	time	t	=	0.3	and	t	=	0.06.	k1 appears	more	influential	than	
k-1 at	t	=	0.06,	while	the	reverse	is	true	at	t	=	0.3

k1	~N(3,0.3)
k-1~N(3,1.0)

Dependency	of	sensitivity	with	time
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Global	Sensitivity	Analysis

• Local	vs.	global	sensitivity	analysis	(SA)

Local	SA	(classic) Global	SA
Model Linear

Monotonic
additive

No	
assumptions

No.	of	factors O-A-T All	together
Factor	range Local

(derivative)
Whole	PDF

Interactions No Yes
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• surprise	the	analyst,	
• find	technical	errors	in	the	model,	
• gauge	model	adequacy	and	relevance,
• identify	critical	regions	in	the	space	of	the	inputs	
(including	interactions),

• establish	priorities	for	research,	
• simplify	models,
• verify	if	policy	options	make	a	difference	or	can	be	
distinguished.

• anticipate	(prepare	against)	falsifications	of	the	analysis	
• …

Adpt.	from	[Saltelli,	2006,	SAMO	Venice]

HOW	MUCH,	WHY,	WHEN…

Global	Sensitivity	Analysis

😀
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• Potentially large input set. 

How to handle the model evaluation with many inputs 
at the time?

• Effect of model structure complexity 
on sensitivity of inputs. 

Often we can have several choices of model 
formulation, each adding, removing or simply 
changing the conceptual basis of existing 
components. What is the effect the model output and 
other inputs in the model of this changes in the model 
structure?
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For	model	with	large	number	of	factors	a	two-step	
global	process	is	recommended:

1. Qualitative	Screening	with	limited	number	of	simulation	(p.ej.	
Morris	Method)
Ranking	and	selection of	important factors (μ*);	Presence of	
interactions (σ)

2. Quantitative	Variance-based	method:	(i.e.	Extended	FAST,	
Sobol,	etc.)
First	order	indexes (Si,	direct effects);	Total	order	(STi,	
interactions)	+	Uncertainty analysis (!)

GSUA	evaluation	framework
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GSUA	Evaluation	Framework

High	Performance	Computing
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• Morris	(1991)	proposed	conducting	individually	
randomized	experiments	that	evaluate	the	effect	of	
changing	one	input	at	a	time	globally.	

• Each	input	assumes	a	discrete	number	of	values,	called	
levels,	that	are	selected	from	within	an	allocated	
probability	density	function	(PDF)	for	the	inputs.	

• Uses	few	simulations	to	map	relative sensitivity
• It’s	Qualitative,	not	quantitative	(low	sampling).	Provides	
an	early	indication	of	the	importance	(ranking)	of	first	
order	effects	vs.	interactions

• Identifies	a	subset	of	more	important	inputs	(could	be	
followed	by	quantitative	analysis)

Screening:	Morris	Method



Agricultural and Biological Engineering

Screening:	Morris	Method
The	key	to	Morris	sampling	is	that	it	is	based	on	the	“unit	hypercube”,	i.e.	every	
input	factor	xi is	always	sampled	from	a	uniform	distribution	U[0,1],	regardless	
of	its	actual	distribution	(like	normal,	lognormal,	beta,	etc.)	assigned	to	that	
factor	(in	the	“.fac”	file).	The	reason	for	this	is	that	the	unit	uniform	distribution	
has	the	very	nice	property	that	the	value	of	the	factor	is	equal	to	its	cumulative	
probability	value:

Notice	that	to	limit	sampling,	the	U[0,1]	is	only	sampled	at	a	few	places	(“levels”,	
where	p=number	of	levels),	and	the	sampling	jump	Δ across	levels	is	
Δ =	p/(2 p – 2) (i.e.	two	levels	in	each	jump).
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The “unit uniform” is a nice trick! It means that we can sample all the xi 
factors (i =1,k no. factors) at once from a Cartesian k-dimensional 
hyperspace, each between {0,1}, and then back-transform them into their 
actual value based on the inverse probability function of the actual 
distribution assigned to that value. This is,

Sample U(0,1) = P(xi) —> xi = P-1(xi) 

where P(xi) is the actual cumulative probability 
assigned to the factor (normal, lognormal, etc.) 
and P-1(xi) is inverse probability function for that 
distribution.

The sampling strategy on the k-dimensional unit-hypercube space is to 
follow a ‘trajectory” with as many “turns” as dimensions (k), each turn 
modifying by a jump Δ in	only one of the coordinates. The input space is 
then evenly sampled with a number of trajectories (r) with as much 
separation from each other as possible.

Screening:	Morris	Method

X(0)
X(1)

X(2)

X(3)

In
pu
t	f
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to
r	1

Input	factor	2

Inpu
t	fac

tor	
3

😀

Number	of	model	simulations	N	=	r (	k +	1)
Example:	k=20,	r=10,	N	=	210



Agricultural and Biological Engineering

Screening:	Morris	Method
• The	elementary	effects	(EEi)	are	calculated	for	each	factor	xi	

as	derivatives	for	each	jump	Δ in	the	trajectories,

• For	each	input	xi,	two	sensitivity	measures	are	proposed	by	
Morris	(1991):	
1. µ :	the	mean	of	EEi,	which	estimates	the	overall	direct	effect	of	the	

input	on	a	given	output
2. s :	the	standard	deviation	of	EEi,	which	estimates	the	higher-order	

characteristics	of	the	input	(such	as	curvatures	and	interactions).	
• Since	the	model	output	could	be	non-monotonic,	

Campolongo and	others	(2003)	suggested	considering	the	
absolute	values	of	the	elementary	effects,	µ*,	to	avoid	the	
effects	of	canceling	EEi of	opposite		signs.

theoretical ones. The performance of this newly developed sam-
pling strategy, the strategy of sampling for uniformity (SU), was
compared to those of MM, OT, and MOT e popular trajectory-based
sampling strategies. The various evaluation criteria included (i) the
quality of the generated parameter distributions, (ii) ED of the
sampling trajectories, (iii) time for sample generation, and (iv) the
ability to correctly identify important model parameters i.e.
parameter screening efficiency. In Section 2 we briefly explain the
basics of EE methods, the details of the proposed SU strategy, and
the settings for the numerical experiments. Section 3 summarizes
the results followed by a discussion and conclusions in Sections 4
and 5, respectively.

2. Material and methods

2.1. Method of EEs

The method of EEs is based on the concept of building trajectories in a unit
hypercube parameter space. Coordinates of two successive points within a trajectory
differ from each other only in one dimension, or one parameter coordinate, by a
fixed amount D.1 D is a multiple of 1/(p-1), usually set to p/[2(p ! 1)], where p is the
number of levels along any parameter axis. p levels indicate that each parameter can
take values from the set {0, 1/(p ! 1), 2/(p ! 1),…, 1} (Fig. 1a). A common practice is
to use four levels (p ¼ 4; e.g. Campolongo et al., 2007; Ruano et al., 2012; Saltelli
et al., 2008). Some sensitivity analysis tools, e.g. SimLab v2.2 (Joint Research
Center, http://ipsc.jrc.ec.europa.eu/?id¼756), use truncated unit hyperspace
(Fig. 1b) in order to avoid infeasibilities in converting trajectories from unit hyper-
space to real values for probability distributions with infinite tails, where D is scaled
accordingly. The EE associated with the ith parameter is calculated using.

EEi ¼ ½yðx1; x2…xi; xiþ1;…xkÞ ! yðx1; x2…:xi þ D; xiþ1;…xkÞ'=D (1)

where y represents themodel under study and k is the number of model parameters.
One EE is produced per parameter from each trajectory. Since the sample consists of
r trajectories, r EEs for each parameter are obtained from the entire sample. Morris
(1991) used the mean m and standard deviation s of the EEs of the ith parameter as
the global sensitivity measures. However, for non-monotonic models the method of
EEs may not detect some parameters to be influential due to positive and negative
EE values canceling each other to produce negligible m. To address this, Campolongo
et al. (2007) recommended calculating the mean of the absolute values of the EEs
(m*). The values of m* (or m) and s have been found equivalent to total effect and
interaction effect sensitivity indices obtained in variance decomposition sensitivity
analyses (Campolongo and Saltelli, 1997; Campolongo et al., 2007; Morris, 1991).

2.2. Trajectories based on sampling for uniformity (SU)

The SU strategy proposed in this work is based on the principle of generating
discrete uniform distributions (based on the first and the last points of trajectories)

for all parameters and maximizing the spread of the sample. It is assumed that p¼ 4
and r is even, a common practice in EE-screening exercises (Saltelli et al., 2008).

The algorithm to generate a parameter sample for k parameters consisting of r
trajectories, each trajectory containing k þ 1 points, by maximizing the ED between
them from Q repetitions, is explained below with an example for the case r ¼ 4,
k¼ 2, p¼ 4, and Q¼ 300 (Fig. 2aec). Appendix (Figure A1) presents the Matlab code
developed for SU which is available as a free download from (http://abe.ufl.edu/
carpena/software/SUMorris.shtml).

STEP 1: Since we desire to generate discrete uniform distributions for all pa-
rameters, the 1st point of exactly r/4 or (r/2 ± 1)/2 trajectories should have a
value on each parameter level, when r/2 is even or r/2 is odd, respectively. First
we randomly select trajectories, for each parameter, for which the 1st point falls
on the first level. From the remaining trajectories, r/4 or (r/2 ± 1)/2 trajectories
are selected randomly for which the 1st points have a value on the second level.
The same procedure is repeated for the third level. The remaining trajectories at
this stage take on the fourth level value at their 1st point. Considering the
property that the 1st and the last i.e. (k þ 1)th points of a given trajectory are
formed by levels with constant offset D (Fig. 1a,b), the last points of all trajec-
tories are assigned appropriate parameter values. In the case of any duplication,
the above procedure is repeated until unique points are sampled. At the end of
this step coordinates of the 1st and the (k þ 1)th points of all trajectories are
generated (Fig. 2a).
STEP 2: Intermediate points i.e. 2nd to kth points of each trajectory are formed by
changing one parameter coordinate of the previous point in that trajectory. This
is done by randomly generating a perturbation vector of length (ke1) for each
trajectory, whose elements are non-repeated integers from 1 to k. If the first
element of this vector is 1 then only the first coordinate of the 1st point of that
trajectory is changed by D to form the 2nd point (Fig. 2b). A complete parameter
sample is generated at the end of this step. A check is provided for the
uniqueness of intermediate points and in the case of duplication the above
procedure is repeated till all sample points are unique (Fig. 2b).
STEP 3: Steps 1 and 2 are repeated Q times. The ED, as defined in Section 2.3.3,
between trajectories is calculated at the end of each repetition. The trajectory set
corresponding to the repetition for which ED ¼ EDmax is selected as the sample
for EE-analysis (Fig. 2c).

It should be noted that the distance maximization approach used in this pro-
cedure is more simple than that used for OT and MOT.

2.3. Numerical experiments

Numerical experiments were carried out to compare performances of the four
sampling strategies; namely MM, OT, MOT and SU, based on the four criteria; fitness
to discrete uniform distributions, trajectory spread - ED, computational efficiency e

CPU time requirement, and parameter screening efficiency. For the last criterion five
standard test functions (Table 2 and Appendix) with varying degrees of complexity
and a range of k were used. Test functions included: (a) the Sobol' G function
(Sobol', 1993), (b) the modified G or G* function (Saltelli et al., 2010), (c) the Morris
function or M function (Morris, 1991), (d) the O function (Oakley and O'Hagan,
2004), and (e) the B function (Saltelli et al., 2008). These functions were selected
based on (1) application history, (2) their nature (properties like linearity, mono-
tonicity, curvature etc.), (3) the availability of analytical expressions for (or known
values of) the total order sensitivity indices, and (4) their modifiability to any k
(except for O andM). The B functionwas used in four configurations while the G and
G* functions were used in six configurations (Table 2). The M and O functions, by
definition, can have only 20 and 15 parameters, respectively. Note that for all test
functions parameters were uniformly distributed within 0e1. Thus, the complete set
of numerical experiments consisted of combinations of the following characteristics.

p ¼ 4; r ¼ f6;10g; k ¼ f15; 20;35;50;80;100g;N ¼ 500;Q ¼ f1;300;1000g

where N is the number of times each experiment is repeated. By definition Q ¼ r for
MM, while for OT and MOT Q ¼ 1000 is a recommended oversampling value
(Campolongo et al., 2007; Ruano et al., 2012). For SU the ideal value of Q is unknown
and hence three Q values (Q ¼ 1, 300 and 1000), hereafter denoted as SU1, SU300
and SU1000, were used. For this study truncated parameter distributions (Fig. 1b)
similar to the MM implementation in SimLab v2.2 (JRC, http://ipsc.jrc.ec.europa.eu/?
id¼756) were used. Note that the meaning of Q (i.e. oversampling size) is different
for SU and other sampling strategies. While in the case of MM, OT, and MOT Q in-
dicates the size of the trajectory pool from which the final trajectories are selected,
for SU Q indicates the number of times the whole sample generation procedure is
repeated.

2.3.1. Testing for uniformity of the generated distributions
All sampling strategies for the EE method assume the parameters have discrete

uniform distributions (in unit hyperspace). To check how consistent the generated
distributions were, the distributions were tested considering only the first and the
last points of trajectories (e.g. Campolongo et al., 2007) against the discrete uniform

Fig. 1. Schematic representation of parameter levels and constant offset coordinates/
jump size for an arbitrary parameter in (a) unit parameter space and (b) truncated unit
parameter hyperspace.

1 For the case of radial sampling strategy D is variable and coordinates of all
sample points in a trajectory differ from the base point in exactly one dimension.

Y.P. Khare et al. / Environmental Modelling & Software 64 (2015) 230e239232
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Screening:	Morris	Method
• A	very	nice	feature	of	Morris	is	the	graphical	representation	of	the	factor	

importance	in	the	“Morris	plane”	where	input	factors	are	plotted		on	(μi
*,	σi)	

axes.	μ*	=	average	of	the	|EEi|	
• The	factors	closest	the	origin	are	less	influential	!!

Kiker,	Muñoz-Carpena et	al.,	Drivers	of	elefant population	in	thr Kruger	National	Park	(So.	Africa)

Importance (ranking)
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• FAST,	in	a	nutshell,		decomposes	the	output	(Y)	variance	V	=	
sY2 using	spectral	analysis,	so	that	V	=	V1 +	V2 +	...	+	Vk +	R,	
where	Vi is	that	part	of	the	variance	of	Y	that	can	be	
attributed	to	xi alone,	k is	the	number	of	uncertain	factors,	
and	R	is	a	residual.	Thus,	Si =	Vi/V	can	be	taken	as	a	measure	
of	the	sensitivity	of	Y	with	respect	to	xi.

• V(Y)	=	∑Vi +	∑Vij +	∑	Vijl +	...	+	V123...k

• FAST	is	a	GSA	method	which	works	irrespective	of	the	degree	
of	linearity	or	additivity	of	the	model.

HDMR*:	Variance	decomposition
Fourier	Amplitude	Sensitivity	Analysis	Test	(FAST)

(*)	HDMR:	High-Dimension	Model	Representation
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INPUT	2

INPUT	1

INPUT	3

HDRM*:	Variance	decomposition
Fourier	Amplitude	Sensitivity	Analysis	Test	(FAST)

Output	Variance,	V(Y)

(*)	HDMR:	High-Dimension	Model	Representation
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V(Y)	– variance	of	output,	Vi – variance	due	input	factor	Xi,	
k	– nr	of	uncertain	factors,	R	- residual

R

V1

V2

V3

V(Y)	=	V1 +	V2 +	… +	Vk +	R

HDRM:	Variance	decomposition
Fourier	Amplitude	Sensitivity	Analysis	Test	(FAST)

Number	of	FAST	model	simulations	N	=	N	≈	M	k;	
where M	=		2b,	b=	9	to 10,	M=	512	to 1024
Example:	k=20,	N=	10240	to 20480
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1.	Si - first-order	sensitivity	index:	Si	=	Vi	/	V(Y)

2.	ST(i) - total	sensitivity	index

STi - Si =	higher	order	effects
SASAC

SABC

SAB

For	model	with	3	inputs:	A,	B,	and	C,	for	input	A:
ST(A) =	SA +	SAB +	SAC +	SABC ST(A)

HDRM:	Variance	decomposition
Fourier	Amplitude	Sensitivity	Analysis	Test	(FAST)
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• Although	FAST	is	a	sound	approach	to	the	
problem,	it	has	seen	little	used	in	the	scientific	
community	at	large.

• If	specific	decompositions	of	interactions	is	
needed,	Sobol further	proposed:

Y	=	f(X1,X2,...,Xk)	=	f0 +	∑	fi(Xi)+	∑	fij(Xi,Xj)		...	+	f12...k

Number	of	Sobol model	simulations	N	=	N	≈	M	(2k	+	2);	 
where M	=		2b,	b=8-12,	M=256	– 4096)
Example:	k=20,	N=	10,752	to 172,032	(typical 21504)
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• Using	variance-based	techniques	in	numerical	
experiments	is	the	same	as	applying	ANOVA	
(analysis	of	variance)	in	experimental	design,	
as	the	same	variance	decomposition	scheme	
holds	in	the	two	cases.	

• One	could	hence	say	that	modelers	are	
converging	with	experimentalists	treating	Y,	
the	outcome	of	a	numerical	experiment,	as	an	
experimental	outcome	whose	relation	to	the	
control	variables,	the	input	factors,	can	be	
assessed	on	the	basis	of	statistical	inference.

[Saltelli et	al.,	1999]
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Choice	of	SA	methods:	Tradeoffs

Salteli et	al,	2005)
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Let’s	find	out	the	most	important	
input	factors	controlling	the	

bungee	jumping	risk
… Morris	GSA
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Simlab GSA	teaching	software
EU-JRC	Ispra,	Saltelli et	al

Inputs
Sampling

Model	Outputs
(import	results)

GSA	
Measures
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GSA	bungee	jumping
Apply	GSA	methods	of	Morris	(and	FAST).	Follow	
these	steps:
1. In	SimLab (EU-JRC)	teaching	software	define	

the	4	input	factors	(H,	M,	σ,	kel)
2. Copy	the	inputs	sample	matrix	into	the	Bungee	

Excel	sheet	and	calculate	the	model	output	
vector	(hmin).

3. Bring	back	the	input	matrix	and	output	vector	
and	process	the	results	in	Simlab
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Selection	of	important	factors	(μ*);	Presence	of	interactions	(σ)
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Risk	control:	Monte	Carlo	Filtering

Discussion:	
• How	could	we	reduce	risk	when	jumping?

σ

• What	factor(s)	should	we	design	our	risk	control	
management	strategy	around?

• How?
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Risk	control:	Monte	Carlo	Filtering
Let’s	MCF	the	UA	outputs	as	“non-behavioral”	(hmin≤0)	
and	“behavioral”	(hmin >	0)	and	“map”	the	most	important	
(and	manageable)	input	factor	(σ).

1. Copy	the	hmin values	from	
the	Uncertainty	Analysis	
sheet

2. Paste	“as	values”	into	a	
new	sheet

3. Filter	the	data	in	two	
subsets	(hmin ≤	0	and	hmin <	
0)]

4. Copy	each	of	the	subsets	
into	another	spreadsheet	
and	create	histograms	for	
σ from	each	subset.
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So,	hmin <	0	only	when	σ <	25	strands!!

Kolmogorov-Smirnov	test	for	difference	in	distributions
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IIMPORTANT	NPUT:

The	Kolmogorov-Smirnov	test	(see	Wikipedia	for	
calculation)	is	used	to	test	if	behavioral	and	non-
behavioural subsets	are	statistically	different	and	if	
so,	MCF	identified	a	candidate	for	an	intervention	
(i.e.	reduce	the	initial	variability	through	some	
action).		In	our	case	sigma:	U[25,40]		
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Risk	control:	increase	σ!	
Through	policy,	regulation	and	enforcement	the	mininum
number	of	bungee	cord	strands	allowed	is	now	
increased	from	20	to	25.	

p(hmin<0)	<	0.001%!!							à 1:100,000
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And	now…
Would	you	jump?
Class	discussion	redux	(4)…
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• Researchers	after	Morris	found	that	the	original	trajectory-based	sampling	
does	not	guarantee	a	uniform	sampling	(like	on	the	left	of	the	Figure).	

• Instead,	one	gets	somewhat	irregular	sampling	across	the	levels.	Although	
this	irregularity	does	not	affect	most	of	the	problems,	for	difficult	outputs	
(highly	non-linear	or	non-continuous	across	the	range),	this	implies	
inaccuracies	in	the	ranking	of	factors.	

• We	propose	the	SU	(Sampling	for	Uniformity)	(Khare et	al.,	2015)	(and	its	
enhanced	version	eSU that	requires	no	oversampling,	Chitale et	al.,	2017)	
that	guarantees	uniformity.	

• This	translates	into	accurate	input	ranking	even	for	the	most	demanding	
test	functions,	like	those	tested	on	Khare et	al.,	(2015)	and	at	a	much	
lower	computational	cost	than	other	improved	methods	proposed.	

Khare, Y.P., Muñoz-Carpena, R., Rooney, R.W., Martinez, C.J. A 
multi-criteria trajectory-based parameter sampling strategy for the 
screening method of elementary effects. Environmental Modelling & 
Software 64:230-239. doi:10.1016/j.envsoft.2014.11.013.

A	note	- SU	Morris	improved	sampling
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• We	currently	only	use	Khare et	al.	(2015)	eSU sampling	as	the	
best	and	most	efficient	method	for	sampling	with	the	Matlab
package	
(http://abe.ufl.edu/carpena/software/SUMorris.shtml).

• We	included	a	user	interface	‘sampler.m’	to	run	a	single	
sampling	or	in	mixed	scripts	(like	unix)	after	compilation	of	the	
Matlab program.	Typical	settings	(recommended)	for	eSU are	
no	oversampling	(1	sample),	8	levels	to	get	a	more	spread	
sampling	across	the	range,	16	trajectories,	and	write	the	
outputs	as	a	text	file	for	later	processing,	i.e.
>> sampler 'bungee4.fac' 'eSU' 1 8 16 'Text'

A	note	- SU	Morris	improved	sampling
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Let’s	repeat	the	bungee	analysis	with	eSU in	Matlab.
1. Download	and	uncompress the	EE	Sampling	and	EE	Measures	packages	

from	http://abe.ufl.edu/carpena/software/SUMorris.shtml
2. Copy	the	‘bungee4.fac’	file	in	the	directory	EE_Sampler.
3. In	Matlab,	select	the	EE_Sampler directory	and	run:

>> sampler 'bungee4.fac' 'eSU' 1 8 16 'Text’

4. This	produces	a	CSV	text	sample	file	‘bungee4_FacSample.sam’.	Open	
the	file	in	Excel	and	paste	the	samples	in	the	bungee	spreadsheet.

5. Create	a	new	Excel	output	file	(‘bungee4_outputs.xlsx’)	with	outputs	in	a	
single	column,	and	the	output	label	in	the	first	row	(hmin).

6. Copy	the	files	bungee4_FacSample.sam,	bungee4_outputs.xlsx	and	
bungee4_FacSamChar.txt	(also	created	in	the	EE_sampler directory	after	
the	run)	and	paste	them	into	the	EE_Measures directory.

7. In	Matlab change	to	the	EE_Measures directory	and	run,
>>EE_SenMea_Calc('bungee4_FacSample.sam','bungee4_FacSamChar.txt'
,'bungee4_outputs.xlsx')

A	note	- SU	Morris	improved	sampling
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8. The	Morris	plot	(modified	and	original)	are	presented	on	the	
screen	during	the	run,	the	graphical	(bungee4_Fig1.pdf)	and	
text	(bungee4_EE_Measures.txt)	outputs	are	written	in	the	
EE_Measures directory,
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A	note	-	SU	Morris	improved	sampling

The	comparison	of	these	graphs	offers	useful	information	
on	dominance	of	interactions	and	monotonicity	of	effects.
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Wrap	up…
What	did	we	learn?
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Wrap	up- what	did	we	learn?
• Uncertainty –intrinsic	&	conditions	management	
decisions

• Models – allow	objective	assessment	of	system	
responses	to	inform	decisions	(only	as	good	as	the	
model!).	

• Uncertainty	Analysis	(UA)	- helps	to	quantify	how	much	
uncertainty	and	risk	associated.

• Global	Sensitivity	Analysis	(GSA)	– serves	to	identify	
important	risk	factors.

• Monte	Carlo	Filtering	(MCF) – allows	to	identify	ranges	
of	important	factors	for	effective	policy/intervention	
strategies.
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Morris	SU	sampling:	Matlab tool
Khare,	Y.P,	Muñoz-Carpena,	R.,	Rooney,	R.W.,	Mar�nez,	C.J.	A	mul�-criteria	trajectory-based	
parameter	sampling	strategy	for	the	screening	method	of	elementary	effects. Environmental	
Modelling	&	SoKware 64:230-239. doi:10.1016/j.envso�.2014.11.013

http://abe.ufl.edu/carpena/software/SUMorris.shtml


