
Scientific Programming with
Python

Pedro Magaña (pmagana@ugr.es)

mailto:pmagana@ugr.es

Outline

• Why learn to code?

• Introduction to Python

• Python for science, where to begin?

• Python language

• Scientific libraries

Why learn to code?

Programming: Pick up
Python

A powerful programming language
with huge community support.

4 February 2015

Nature

http://doi.org/10.1038/518125a

http://doi.org/10.1038/518125a

By Jupyter, it all makes
sense

Why Jupyter is data scientists’
computational notebook of choice

1 November 2018

Nature

http://doi.org/10.1038/
d41586-018-07196-1

http://doi.org/10.1038/d41586-018-07196-1
http://doi.org/10.1038/d41586-018-07196-1

Counting programming language mentions in astronomy papers (2015)

Samples

Introduction to Python

What is Python?

Python is a modern, general-purpose, object-oriented, high-
level programming language.

General characteristics of Python:

• clean and simple language: Easy-to-read and intuitive code,
easy-to-learn minimalistic syntax, maintainability scales well
with size of projects.

• expressive language: Fewer lines of code, fewer bugs, easier
to maintain.

• encourage many good programming practices: Modular,
documentation tightly integrated with the code, etc.

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

• Extensive ecosystem of scientific libraries

• NumPy: numerical Python MATLAB matrices
and arrays

• SciPy: scientific Python MATLAB toolboxes

• pandas: extends NumPy

• Matplotlib: graphics library

• Sympy: symbolic mathematics library

http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org
http://www.sympy.org

• Scientific (and non-scientific) development environments
available

• spyder: MATLAB-like environment

• Jupyter/IPython notebooks: environment for interactive and
exploratory Python

• Visual Studio Code: new Python lightweight environment

• PyCharm: Python environment for developers

• Great performance due to close integration with time-tested and
highly optimized codes written in C/C++ and Fortran

• Readily available and suitable for use on high-performance
computing clusters

• No license costs, no unnecessary use of research budget

https://github.com/spyder-ide/spyder
https://jupyter.org
https://code.visualstudio.com
https://www.jetbrains.com/pycharm

Python for science, where to begin?

Why are there two versions of
Python?

• At one time, there were a lot of modules not
compatibles with Python 3

• Python 2 is still actively supported. For
example, many Linux distributions and
Macs are still using internally 2.x as default

It's 2018. Why to choose Python 3?

• Differences between Python 2 and 3 are
relatively minor for beginner programmers

• Python 3 brings many improvements over
Python 2

• Python 2 end-of-life will be on January 1st,
2020

Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used
scientific libraries in science like NumPy, SciPy,
Pandas, matplotlib, etc. already installed. In the past, it
was usually painful to build some of these packages.

Also, include development environments with
advanced editing, debugging and introspection
features.

• Anaconda

• Cross-platform

• Supports Python 2 and 3

• Most widely adopted

• Canopy

• Cross-platform

• Supports Python 2 and 3

• Includes a built-in IDE

• WinPython

• Windows-only platform

• Only supports Python 3

• Python(x,y)

• Windows-only platform

• Only supports Python 2

• Not actively developed

https://www.continuum.io/downloads
https://store.enthought.com/downloads
http://winpython.github.io/#releases
http://python-xy.github.io/downloads.html

Anaconda Navigator

Anaconda Navigator: installing new packages

Spyder

Jupyter notebooks

Visual Studio Code

PyCharm (need to be installed separately from
Anaconda)

Editor Learning
curve

Users Benefits

Spyder pretty short Matlab and R
background

mature,
many
features

Jupyter smooth teachers interactive

Visual Studio
Code

moderate scientifics /
developers

code quality

PyCharm steep developers professional
code

Where to look for help?

• Official documentation: http://www.scipy.org/
docs.html

• Usually included in development environments as
contextual help:

• Spyder: Ctrl+I (Windows) or Cmd+I (Mac)

• Visual Studio Code: Ctrl+Space (Windows/Mac)

• PyCharm: F1 (Windows/Mac)

• Be careful about code you get on the internet!

http://www.scipy.org/docs.html
http://www.scipy.org/docs.html

Bibliography

• Elegant SciPy: The Art of Scientific Python por Juan Nunez-Iglesias, Stéfan van der Walt y
otros (2017). ISBN: 9781491922873.

• Python for Data Analysis (2nd Edition) por Wes McKinney (2017). ISBN: 1491957662.

• Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data
Visualization using Python por Theodore Petrou (2017). ISBN: 9781784393878.

MOOC (Online Courses)

• Python for Data Science (University of California)

• Introduction to Python for Data Science (Microsoft)

• Intro to Python for Data Science (Datacamp)

• MOOC aggregator

https://www.class-central.com/course/edx-python-for-data-science-8209
https://www.edx.org/course/introduction-to-python-for-data-science
https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.class-central.com

