Scientific Programming with Python
(2018 Edition)

https://edfa.ugr.es/python

Pedro Magana (pmagana@ugr.es)

http://gdfa.ugr.es/python
mailto:pmagana@ugr.es

Outline

Why learn to code?

Introduction to Python

Python for science, where to begin?
Python language

Scientific libraries

Why learn to code?

for 1 in people.data.users:

response - client.api.statuses.user_timeline.get(screen_name-i.scre
orint 'Got', len(response.data), 'tweets from', i.screen_name
if len(response.data) '- 0:
ltdate - response.datal0] ['created_at')
ltdate2 - datetime.strptime(ltdate, '%a %b %d %H:%M:%S +0000 %Y'
today - datetime.now()
howlong - (today-ltdate2).days
* howlong < daywindow:
orint i.screen_name, "has tweeted in the past' , daywindow,
totaltweets += len(response.data)
for § in response.data:
. j.entities.urls:
for kK in j.entities.urls:
newurl = k['expanded url']
urlset.add((newurl, j.user.screen_name))

orint i.screen_name, 'has not tweeted in the past', daywind

VISIT CNBC.COM> | Q SEARCH

. make it

HOME ENTREPRENEURS LEADERSHIP CAREERS MONEY SPECIALS

Apple CEO Tim Cook: Learn to code, it’s more
important than English as a second language

Catherine Clifford [12:58 PM ET Thu, 12 Oct 2017

IEEE Spectrum | Trending | Jobs

| 100

(click to hide)

@ Web D Mobile ! Enterprise ¥ Embedded

—
-

S0
-

s
C#

JavaScript

PHP

SQL

2.
3.
4,
5.
6.
7.
8.
9.

Ruby

10. Shell

PYTHON JAVA

THIS IS PLAGIARISM, I'M TWO PAGES INAND ISTILL
YOU CAN'T JUST "IMPORT ESSAY." HAVE NO IDEAWHAT YOU'RE SAYING.

g
£
g
£
g
3

PICKUP PYTHON

A powerful programming language with huge community support.

BY JEFFREY M. PERKEL

at lowa State University in Ames. Offi-

cially, she is an assistant professor of agri-
cultural and biosystems engineering. But she
works not in the greenhouse, but in front of a
keyboard. Howe is a programmer, and a key
part of her job isas a data professor’ — devel-
oping curricula to teach the next generation
of graduates about the mechanics and impor-
tance of scientific programming.

Howe does not have a degree in computer
science, nor does she have years of formal train-
ing. She had a PhD in environmental engineer-
ing and expertise in running enzyme assays
when she joined the laboratory of Titus Brown
at Michigan State University in East Lansing.

Last month, Adina Howe took up a post

Brown specializes in bioinformatics and uses
computation to extract meaning from genomic
data sets, and Howe had to get up to speed on
the computational side. Brown’s recommenda-
tion: learn Python.

Among the host of computer-programming
languages that scientists might choose to pick
up, Python, first released in 1991 by Dutch pro-
grammer Guido van Rossum, is an increasingly
popular (and free) recommendation. It com-
bines simple syntax, abundant online resources
and a rich ecosystem of scientifically focused
toolkits with a heavy emphasis on community.

HELLO, WORLD

With the explosive growth of ‘big datd’ in
disciplines such as bioinformatics, neurosci-
ence and astronomy, programming know-how

\

is becoming ever more crucial. Research-
ers who can write code in Python can deftly
manage their data sets, and work much more
efficiently on a whole host of research-related
tasks — from crunching numbers to cleaning
up, analysing and visualizing data. Whereas
some programming languages, such as MAT-
LAB and R, focus on mathematical and statis-
tical operations, Python is a general-purpose
language, along the lines of C and C++ (the
languages in which much commercial software
and operating systems are written). As such, itis
perhaps more complicated, Brown says, but also
more capable: it isamenable to everything from
automating small sets of instructions, to build-
ing websites, to fully fledged applications. Jes-
sica Hamrick, a psychology PhD student at the
University of California, Berkeley, has been

5 FERBRUARY 2015 | VOL 518 | NATURE | 125

@ 2015 Macmillan Publishers Limited. All rights reserved

Programming: Pick up Python

A powerful programming language with huge
community support.

Jeffrey M. Perkel
04 February 2015
Nature

http://doi.org/10.1038/518125a

http://doi.org/10.1038/518125a

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

RS Eipt
“-java

9%

6%

3%

% of overall question views each month

0%

2012 2014 2016 2018
Time

Complex object sort

Samples

GUADALETE ESTUARY (SPAIN)

Wave 17w i Aovmt vahdd

Evvaonuiaal FLas Drvav oy A . £ Aorus vaknSs 0 DO

UNIVERAIDAD
B Chnbrna s Ammbrarsd DE GRANADA

Coaptee @ Surwory

e - P

1. Gops preprocessing

ove ave SSRLLIR LT

-
M s W Ny ite R Re sotm A vy
- T
| i r
> - B
» '
g 4
. "‘.. -’-”|'n.,l ’ 'l‘l

TOTALWATER LEVEL

<)

Study site Guadalete

Result location

Point 1 A
X-UTM (m) 747614.42
Y-UTM (m) 4052587.12 ¢
e A A
Time zone 29N

Next

Back

Select agents

Astronomical tide Storm surge Wave River discharge

Forecasted water level Past water level

Select simulation parameters

Initial year 2020

Number of years 2

Select conditions

Operation © Extreme

Date:2020-03-11

Time:03:00
- Total:3.532 $
25 1 AT:3.527 @ TOTAL
i o SS:-5.797e-4 * . | O
: W:8.197e-4 e AT ™
) . o Q:4.657¢-3 o ® SS 0
1 ¢ ! o w o
- . . O
: Y I y
2.5 4 ° ¢ o =]
L]
: o 4 {.}
- 27 ? ° =2
E ' N
y - °
g -
&) -
1.5 4 .
- L]
| °
7 [
1 il 4
. ® * ° []
T ° °
- .] ®
0.5 1 hd | ®
i o e
- []
7 ° ° S o
0 g L O O L ® ¢ L 4 L L o L v o L L 4 = \. L L 4

3/08 3/09 3110 3/11 312 313 314

Notebooks Preview

Libraries What's New Status Help

L

~
¢ ﬁ Featured: Dr. Garth Wells’ Eng101 @ Cambridge University

@O

Pl e g e Interactive
coding in your
browser

Free, in the cloud,
powered by Jupyter

Get Started

Hola, Colaboratory B

Archivo Editar Ver Insertar Entorno de ejecucion Herramientas Ayuda

GO COMPARTIR

CODIGO TEXTO 4 CELDA ¥ CELDA ¢ COPIAREN DRIVE CONECTAR ~ 2 EDICION A

indice Fragmentos de cddigo Archivos

Te damos la bienvenida a Colaboratory
Introduccién
Funciones destacadas

Ejecucion de TensorFlow

GitHub

Visualizacion

Compatibilidad con tiempos de ejecucion
locales

SECCION

Te damos la bienvenida a Colaboratory

Colaboratory es un entorno gratuito de Jupyter Notebook que no requiere configuracion y que se ejecuta
completamente en la nube. Puedes consultar mas informacién en la seccion de preguntas frecuentes.

Introduccion

e Descripcion general de Colaboratory

e Cargary guardar datos: archivos locales, Drive, Hojas de calculo y Google Cloud Storage
e |mportar bibliotecas e instalar dependencias

e Usar Google Cloud BigQuery

e Formularios, Graficos, Markdown y Widgets

e TensorFlow con GPU

e Curso intensivo de aprendizaje automatico: Introduccién a Pandas y Primeros pasos con TensorFlow

v Funciones destacadas

v Ejecucion de TensorFlow

Colaboratory permite ejecutar cédigo de TensorFlow en el nhavegador con un solo clic. En el siguiente ejemplo se anaden dos matrices.
I. 1. 1. 4 1. 2. 3. B 2. 3. 4.
I. 1. 1. 4. 5. 6. 5. 6. 7.

[] Aimport tensorflow as tf

7 Popular Software Programs Written in Python

Python is a popular coding language for several reasons - it's relatively easy to learn and read, has a massive library to help
you solve many of your coding problems, and a very active and welcoming community of users.

Even if you have no idea what kind of language Python is, chances are you're quite familiar with many programs that are
written in Python. Here's a list of some of the more popular ones:

YouTube

With over 4 million views per day and 60 hours of video uploaded every minute, YouTube has become one of the most
visited sites on the planet. Python is used for different purposes all over the site and because of its speed, it allows for the
development of maintainable features in record time. Every time you watch a video, you're executing Python code.

Google

Python is recognized as an official language at Google and has been with them since the beginning. Its flexibility, rapid
development, scalability and excellent performance are the reasons why Python is so actively used - in things such as
system administration tools and lots of Google App Engines apps. Google has a strong relationship with the language and
sponsors various Python conferences.

Instagram

Founded in 2010, Instagram has become one of the most popular photo / video sharing social media apps with over 300
million users. The app utilises many languages but it's application servers are built using iterations of Python with Django
as the web framework.

Reddit

An entertainment, social networking, and news site — all rolled into one. It's one of the biggest communities on the web
and its registered users, people like you, provide the content. Originally written in Common Lisp, it was rewritten in Python
in 2005 to gain greater development flexibility and access to Python's plethora of code libraries.

Spotify

Spotify is a popular music streaming service and a big fan of Python - they use it in their back-end services and in data
analysis. The Python module, Luigi, is used to power the Radio and Discover features, as well as the recommendations for
people to follow. Speed is an important factor at Spotify and Python accomplishes this. Spotify is also active in the Python
community and sponsors conferences.

Dropbox

Dropbox lives in the cloud - offering services in cloud storage, data management, file sharing, and client software.
Originally, both the Dropbox server (running on the cloud) and desktop client software were primarily written in Python.
Drew Houston, co-founder of Dropbox, considers Python one of his favorite languages due to its simplicity, flexibility, and
elegance.

Quora

Got a question? You can ask it here — on just about any topic you can think of. The creators of Quora, who used to work for
Facebook, chose Python because it's expressive and quick to write. LiveNode, one of the internal systems that manages
the display of content on the webpage, is partly written in Python.

Pythonista 3

A Full Python IDE for iOS

Pythonista is a complete development
environment for writing Python™ scripts on
your iPad or iPhone. Lots of examples are
included — from games and animations to
plotting, image manipulation, custom user
interfaces, and automation scripts.

In addition to the powerful standard library,
Pythonista provides extensive support for
interacting with native iOS features, like
contacts, reminders, photos, location data,
and more.

Download on the
> - App Store

Universal App for iPhone +iPad

Image of the Day.py
import feedparser
from PIL import Image
import sys

if sys.version_info[0] >= 3:

from urllib.request imp
else:
from urllib import urlr

def main():

Image of the Day.py: 29

-

Locals

ort urlretr description ‘The drizzle of ’

etrieve feed
image_url ‘httg
img <PIL.JpegImagePlugin.Jpeg
© latest
(@) ['id']
(1) ['published'] 'Fri, 10 Jun

artswith("' (2) ['published_parsed']
(‘href')

mage mode=RGB size=1280x952 at Ox12DAEEE48>
e0fTheDay.jpg')

a full-screen view. Ta

Introduction to Python

What is Python?

Python is a modern, general-purpose, object-oriented, high-level
programming language.

General characteristics of Python:

 clean and simple language: Easy-to-read and intuitive code,
easy-to-learn minimalistic syntax, maintainability scales well with
size of projects.

o expressive language: Fewer lines of code, fewer bugs, easier to
maintain.

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

Advantages:

The main advantage is ease of programming, minimizing the time required to
develop, debug and maintain the code.

Well designed language that encourage many good programming practices:

 Modular and object-oriented programming, good system for packaging and re-use
of code. This often results in more transparent, maintainable and bug-free code.

 Documentation tightly integrated with the code.
A large standard library, and a large collection of add-on packages.

Packaging of programs into standard executables, that work on computers
without Python installed.

Disadvantages:

 Since Pythonis an interpreted and dynamically typed
programming language, the execution of python code can be
slow compared to compiled statically typed programming
languages, such as C/C++ and Fortran.

e Somewhat decentralized, with different environment, packages
and documentation spread out at different places. Can make it
harder to get started.

e Python has a strong position in scientific computing

 Large community of users, easy to find help and documentation.
e Extensive ecosystem of scientific libraries

e NumPy: numerical Python =~ MATLAB matrices and arrays

e SciPy:scientific Python =~ MATLAB toolboxes

e pandas: extends NumPy

e Matplotlib: graphics library

e Sympy: symbolic mathematics library

http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org
http://www.sympy.org

APl Tutorial Gallery

seaborn

didggenge
3%
<

I|||II--
.‘. -

:. :;;;;g) I l.l

oooo

Log Normal Distribution (p=0, 0=0.5) o ‘ Plot 7 lorenz example Plot

PDF =
OF 04
) 6 8
fL
i \ *1 u
7]| |
: . 17.5 — & o :
) ¥ SN R s 34 4 »
Rl s W T] -=’.
pve D s it 4) "
7 -«
A m N _gEEEgsET

Plot Density vs Atomic Welght o Elements (colored by melting poin)
)
k
‘0
¢
; , b1
{ Y ’ 33 w“ 0
8 !
3 PR
M 8'& 0 “‘; 5’: ’
1 R X U
A g) ‘
W | |
6 7 z‘s 9 | A0mE wooht (amu)

e Scientific (and non-scientific) development environments available
e spyder: MATLAB-like environment

e Jupyter/IPython notebooks: environment for interactive and exploratory
Python

e Visual Studio Code: new Python lightweight environment
e PyCharm: Python environment for developers

 Great performance due to close integration with time-tested and highly
optimized codes written in C/C++ and Fortran

e Readily available and suitable for use on high-performance computing clusters

* No license costs, no unnecessary use of research budget

https://github.com/spyder-ide/spyder
https://jupyter.org
https://code.visualstudio.com
https://www.jetbrains.com/pycharm

Python for science, where to begin?

Why are there two versions of Python?

e Atonetime, there were a lot of modules not
compatibles with Python 3

* Python 2 is still actively supported. For example,
many Linux distributions and Macs are still using

= internally 2.x as default
-~ PYTHON PYTHON

== 2 3

It's 2018. Why to choose Python 3?

» Differences between Python 2 and 3 are relatively
minor for beginner programmers

e Python 3 brings many improvements over Python 2

e Python 2 end-of-life will be on January 1st, 2020

Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used scientific
libraries in science like NumPy, SciPy, Pandas, matplotlib, etc.
already installed. In the past, it was usually painful to build some of

these packages.

Also, include development environments with advanced editing,
debugging and introspection features.

Anaconda

e Cross-platform

e Supports Python 2 and 3
 Most widely adopted
Canopy

e Cross-platform

e Supports Python 2 and 3
e Includes a built-in IDE
WinPython
 Windows-only platform
e Only supports Python 3
Python(x,y)
 Windows-only platform
e Only supports Python 2

* Not actively developed

https://www.continuum.io/downloads
https://store.enthought.com/downloads
http://winpython.github.io/#releases
http://python-xy.github.io/downloads.html

.) AN ACO N DA [] Induded in Anaconda

Powered by Continuum Analytics

Python interpreter

@ python

Scientific libraries
Numpy @SCipy pandas 14 i) d * matplotlib <& symey

Development environments

AR s— |
G Thii)Q ﬁ"

spyder

.” Environments
J .
N Learning

a—n Community

Documentation

Developer Blog

¥ o

Applications on

Anaconda Navigator

base (root)

-
Jupyter
,\/
Notebook

5.7.0

Web-based, interactive computing notebook

environment. Edit and run human-readable
docs while describing the data analysis.

Glueviz

0.13.3
Multidimensional data visualization across

files. Explore relationships within and among

related datasets.

Channels

IPTy

Qt Console

431

PyQt GUI that supports inline figures, proper

multiline editing with syntax highlighting,
graphical calltips, and more.

JupyterLab

0.35.0

An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Refresh

Spyder

3.31

Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Orange 3

3.16.0

Component based data mining framework.
Data visualization and data analysis for
novice and expert. Interactive workflows
with a larae toolbox.

Anaconda Navigator: installing new packages

ﬁ Home
Search Environments Q Installed v Channels Update index... Search Packages Q

.” Environments I base (root) > Name v T Description Version

- _nb_ext_conf ®)
prophe

‘ Learning

Advanced enumerations (compatible with
python's stdlib enum), namedtuples,

Matrices describing affine transformation

o0 A i
ax COmmunity affine of the plane.

A data analysis library that is optimized for
humans instead of machines.

Agate-dbf adds read support for dbf files to
agate.

agate 1.6.1

agate-dbf 0.2.0

Agate-excel adds read support for excel

files (xls and xlsx) to agate. haz

agate-excel

Agate-sql adds sql read/write support to

0.5.3
agate.

agate-sql

Configurable, python 2+3 compatible

sphinx theme. 0.7.12

alabaster

altair 1.2.1

Simplifies package management and

anaconda deployment of anaconda

Documentation custom

anaconda-clean Delete anaconda configuration files

Developer Blog

anaconda-client Anaconda.org command line client library

, I] @ Tnnl FAar anrFanciilakina riinninAa anAd

Spyder

| NON | @ Spyder (Python 2.7)

DR Ee pBBERG == B BX £FEA& €9 uespeadco G

o6 Editor - /Users/pedro/Development/PycharmProjects/delft3d_netcdf/main.py (<N] Help

Q|® temp.py @ main.py “ Source Editor Object pandas.DataFrame) -1

16 def print_variables(dataset):

17 for d in dataset.variables:
18 desc = dataset.variables[d].name + ': ' + dataset.variables[d].long_name DataFrame
19 desc += ' [' + dataset.variables[d].units + ']' if 'units' in dataset.variables[d].nc:

20

21 print desc Definition : DataFrame(data=d)
22

23

24 def get_value(dataset, variable, cp):
25 class DataFrame():

26 m = cplo]

27 n = cpll] Two-dimensional size-mutable, potentially heterogeneous tabular
28 stations = pd.DataFrame(dataset.variables['MNSTAT']1[0], columns=['M', 'N']) data structure with labeled axes (rows and columns). Arithmetic
29 station_index = stations[(stations.M == m) & (stations.N == n)].index[0] operations align on both row and column labels. Can be thought of
30 as a dict-like container for Series objects. The primary pandas data
31 structure.

32 start_time = datetime.strptime(dataset.variables['time'].units, 'seconds since %Y—-%m—%d %t)

33 seconds_offset = np.array(dataset.variables['time'][:], dtype='double') data : numpy ndarray (structured or homogeneous), dict, or

34 DataFrame

35 time_vector = np.array([date2num(start_time + timedelta(seconds=s)) + 366 for s in seconds

36 dtype="'double') Variable explorer File explorer m

37

38 IPython console

06
39 values = np.array([], dtype='double') ~
40 if variable == 'ZWL': Ble consoea | Loy

41 values = np.array(dataset.variables[variable] [:, station_index], dtype='double') Python 2.7.15 |Anaconda custom (64-bit)| (default, May 1 2018, 18:37
42 elif variable == 'ZCURU': Type "copyright", "credits" or "license" for more information.

43 values = np.array(dataset.variables[variable]l[:, @, station_index], dtype='double')

44 IPython 5.8.0 —— An enhanced Interactive Python.

45 data = {'data_nc': OrderedDict([? -> Introduction and overview of IPython's features.

46 ('X', np.array(dataset.variables['XSTAT'][:, station_index], dtype='double')), squickref —> Quick reference.

47 ('Y', np.array(dataset.variables['YSTAT'][:, station_index], dtype='double')), help —> Python's own help system.

48 ('XUnits', 'm'), object? —> Details about 'object', use 'object??' for extra details.
49 ('YUnits', 'm'),

50 ('val', values), In [1]:
51 ('Time', time_vector),

52 ('Name', dataset.variables[variable].long_name),

53 ('Units', dataset.variables[variable].units)])

54 }

55

56 return data

57

58

59 def save_mat(data, filename):

60 savemat(filename, data, oned_as='column')

61

Type : Present in pandas module

IPython console ™ Il g1 (e]g A le]e]
Permissions: RW End-of-lines: LF Encoding: UTF-8 Line: 28 Column: 23 Memory: 56 %

Jupyter notebooks

+ x & B 44 ¥ MRun B C » Markdown i¥ Edit Presentation =@ Show Presentation
In [57]: Slide Type
from sympy import diff, sin, exp
diff(sin(x)*exp(x), X)

Oout[571: €*sin(x)+ €* cos(x)
Slide Type = Fragment

Compute [(e* sin (x) + e* cos (x)) dx

In [58]: Slide Type

from sympy import integrate, cos

integrate(exp(x) * sin(x) + exp(x) * cos(X), X)

Out[58]: ¢* sin(x)

Slide Type Sub-Slide

Compute f_°:o sin (x?) dx

In [59]: Slide Type

from sympy import oo

integrate(sin(x**2), (x, -00, 00))

Out[59]: \/'2'\/;

2

test_summary.py — protocol

@ EXPLORADOR @ test summary.py %

=

#!/usr/bin/env python

coding: utf-8

from __future__ import (absolute_import, division,

| | \ \ \ \ print_function, unicode_literals)

4 EDITORES ABIERTOS

X @ test summary.py clim...
4 PROTOCOL

» _ pycache__
.cache
.hypothesis
.pytest_cache
data

try:
noinspection PyUnresolvedReferences, PyCompatibility
from builtins import * # noga

except ImportError:

. pass

O oo~NOL s WN

>

>

3

>

b output

b stats

3
?

.
()

util

=
N

import os
_init__.py
_init__.pyc
@ test_analysis.py
@ test_read.py
= test_read.pyc
@ test_summary.py
= test_summary.pyc
> third_party
b util
@ _init__.py
£ _init__.pyc
< .gitignore
@ analysis.py
£ analysis.pyc
@ read.py
= read.pyc
@ README.md
@ summary.py

=R
5 W

import matplotlib.pyplot as plt

[
o u

from climate import summary, tests

from climate.util import plot

from climate.stats import empirical_distributions
from input import saih, tidal_model_driver

BB R
© © N

PROBLEMAS SALIDA CONSOLA DE DEPURACION TERMINAL

Hasta el momento, no se encontraron problemas en el drea de trabajo.

¢ > ESQUEMA
> TODOS

PyCharm (need to be installed separately from Anaconda

I protocol

g
£

Z: Structure

¥ 2: Favorites

[m]

protocol = [report = [tests ﬁ,les(_la(ex.py

[&] Project ~ o = & —
v Im protocol
>
>
» Imdocs
v protocol
|
|
Ex climate
B input
P inputadapter
Em metoceandataframe
= preprocessing
Ex report
> I locale
> [Ex sections
» I templates
v [Dutests
>
>
>
> [sections
> bm util
e —init__.py
e test_latex.py
> bm util
4 .gitignore
e —init__.py
e latex.py
=4 README.md
< .gitignore
& .gitmodules
=& README.md
» ||l External Libraries

4 vVvVVvVYVYVYYY

Version Control: Local Changes Log

¥ Default 4 files
S

i climate ~/Development/PROTOCOL/protocol/protocol
2B misc.xml ~/Development/PROTOCOL/protocol/.idea
i) ifp ol.iml ~/Development/PROTOCOL/protocol/.idea

i report ~/Development/PROTOCOL/protocol/protocol

» Unversioned Files 1 file
=
H-
©,
»
i= 6: TODO & Python Console B Terminal |+ 9: Version Control

ﬁ, latex.py

[f, prep ing.py EJ:- late.py [El', common.py i;test_latex.py
__future__ (absolute_import, division
print_function, unicode_literals)
builtins *
ImportError:
os
metoceandataframe.metoceandataframe MetOceanDF
preprocessing missing_values
report latex, tests
test_create_latex_document_granada_beach():
location =
drivers = [
data = []
driver drivers:
modf = os.path.join(tests.current_path
.format(location, driver))
data.append(MetOceanDF. read_file(modf))
template = os.path.join(tests.current_path
latex.create_document(data, template =location)

& test_create_latex_document_cancun():
location =
drivers = [

data = []

test_create_latex_document_canc...

st_latex.py [protocol]

e driver.py

. format(location))

pytest for test_latex.test_create_latex_document_cancun v G G 5 Git:
~=2 SciView: Data Plots e
Run console or debugger to view available data
Documentation: protocol zZ 0
No documentation found.
o
Q) Event Log

3710 LF+ UTF-8 Git: master +

]

aseqejeq ((() p

MBIAIS i

uopeuewnooq M)

Editor Learning curve Users Benefits

Spyder pretty short Matlaband R mature, many
background features

Jupyter smooth teachers Interactive

Visual Studio moderate scientifics / code quality

Code developers

PyCharm steep developers professional

code

Where to look for help?

Official documentation: http://www.scipy.org/docs.html

Usually included in development environments as contextual
help:

e Spyder: Ctrl+I (Windows) or Cmd+I (Mac)
e Visual Studio Code: Ctrl+Space (Windows/Mac)
e PyCharm: F1 (Windows/Mac)

Be careful about code you get on the internet!

http://www.scipy.org/docs.html

Python language

Using Python as a Calculator

2 + 2
> 4

50 - 5%6
> 20

(50 - 5%6) / 4
> 5.0

ivision always returns a floating point number

V 00 H

d
/ 5
1.6

Strings

prefix = 'Py'
word = prefix + 'thon'

character in position ©
print(word[0])
> P

characters from position @ (included) to 4 (excluded)
print(word[0:47])
> Pyth

0-based indexing
* half-open range indexing: [a, b)
e print statement to get outputs

e line comments

Lists

empty list
squares = []

lists might contain items of different types
squares = ['cat', 4, 3.2]

negative indices mean count backwards from end of sequence
print(squares[-1])
> 3.2

list concatenation
squares = squares + [81, 'dog']

list functions
squares.remove(3.2) # remove the first ocurrence
squares.append('horse') # concatenation: same as +

print(squares)
> ['cat', 4, 81, 'dog', 'horse']

a= [lal’ lbl, lcl:l
[1, 2, 3]

-
I

1t 1s possible to nest Llists
(create lists containing other Llists)
X = [a, Nn]

print(x)
> [['a', 'D", 'c'"], [1, 2, 3]]

print(x[@])
>|:lal, lbl, ICI:l

print(x[O][1])
> b

Simple code: Fibonacci series

, b =0, 1
a < 10:
print(a),
the sum of two elements defines the next
a+ b
b
C

C
a
b

0112358

indentation level of statements is
significant

multiple assighment

1+1=2
1+2=3
2+3=5
3+5=8
5+8=13
8+13=21
13+21=34
214+34=55

The Fibonacci Sequence

1f Statements

X = -4

if x < 0:
X = 0
print('Negative changed to zero')
elif x ==
print('Zero')
elif x == 1:
print('Single’)
else:
print('More')

> Negative changed to zero

for Statements

words = ['cat', 'window', 'defenestrate']

for w 1in words:

len returns the number of items of an object.
print(w, len(w))

> cat 3
> window 6
> defenestrate 12

range(stop): Built-in function to create lists containing arithmetic
progressions.

range(10)
> [09, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(9, 10, 3)
> [0, 3, 6, 9]

range(9, -10, -1)
> [0, -1, -2, -3, -4, -5, -6, -/, -8, -9]

total = 0
i range(4): # range(4) = [0, 1, 2, 3]
total = total + 1 # i is not used
total

 Please avoid Matlab-like for statements with range:

W range(len(words)):
words[w], len(words[w])

def fibonacci(n):
"""Build a Fibonacci series up to n.

Args:

n:

upper limit.

Returns:

A

list with a Fibonacci series up to n.

f =[] # always initialize the returned value!

a, b =0, 1
while a < n:
f.append(a)
the sum of two elements defines the next
c=a+bhb
a=>b
b =c
return £

now call the function we just defined:
print fibonacci(1000)

Functions

> [, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: documentation strings (docstrings)

Python documentation strings (docstrings) provide a convenient way of associating
documentation with Python functions and modules.

Docstrings can be written following several styles. We use Google Python Style Guide.

An object's docsting is defined by including a string constant as the first statement in
the function's definition.

Unlike conventional source code comments the docstring should describe what the
function does, not how.

All functions should have a docstring.

This allows to inspect these comments at run time, for instance as an interactive help
system, or export them as HTML, LaTeX, PDF or other formats.

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

Functions: default argument values

def fibonacci(n, s=0):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.
s: lower limit. Default 0.

Returns:
A list with a Fibonacci series up to n.

f =[] # always initialize the returned value!

a, b =0, 1
while a < n:
if a >>= s: # lower limit

f.append(a)
the sum of two elements defines the next
=a+b
b
= C

o v N
I

return £

print fibonacci(16000, 15)
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(16000, 0)
>[e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(1000)
> [e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: keyword arguments

print fibonacci(1000, 15) # positional arguments
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(s=15, n=1000) # keyword arguments
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: importing external functions

functions # without .py extension
functions.fibonacci(3)

> [0, 1, 1, 2]

functions fibonacci
fibonacci(3)

> [0, 1, 1, 2]

functions f # alias
f.fibonacci(3)

> [0, 1, 1, 2]

Recommendation
The best way to import libraries is included in their official help

Some examples:

math
numpy np

scipy Linalg, optimize
pandas pd
matplotlib mpl
matplotlib.pyplot plt

sympy

Code Style

Style Guide for Python Code: PEPS.
Use only English (ASCII) characters for variables, functions and files.

Name your variables, functions and files consistently: the convention
is to use lowercasewith_underscores.

We all use single-quoted strings to be consistent. Nevertheless,
single-quoted strings and double-quoted strings are the same. PEP
does not make a recommendation for this, except for function
documentation where tripe-quote strings should be used.

PEPS8 exceptions

e Longlines

It is very conservative and requires limiting lines to 79 characters. We use all
lines to a maximum of 119 characters. This is the default behaviour in PyCharm.

e Disable checks inone line

Skip validation in one lines by adding following comment:
nopep8

datetime data type

The datetime module supplies classes for manipulating dates and times. Avoid converting
dates or times to int (datenum or similar).

datetime datetime, date, time

Using datetime.combine()

d = date(2005, 7, 14)

t = time(12, 30)

dtl = datetime.combine(d, t)

dtl
> 2005-07-14 12:30:00

dtl.year
> 2005

timedelta([days[, seconds[, microseconds[, milliseconds[,
minutes[, hours[, weeks]]1]111711)

All arguments are optional and default to 0. Arguments may be ints, longs, or
floats, and may be positive or negative.

datetime timedelta
dt2 = dtl + timedelta(hours=5)

dt2
> 2005-0/7-14 17:30:00

boolean data type

boolean values are the two constant objects False and True. In
numeric contexts (for example when used as the argument to an

arithmetic operator), they behave like the integers O and 1,
respectively.

Nevertheless, other values can also be considered false or true:
e thefollowingvalues are consideredfalse: 0, "' ', [], (), {},None

e all other values are considered true, so objects of many types are
always true

Scientific libraries

Pandas

fast and efficient Series (1-dimensional) and DataFrame (2-
dimensional) heterogeneous objects for data manipulation with
integrated indexing

tools for reading and writing data from different formats: CSV and
text files, Microsoft Excel, SQL databases, HDF5...

intelligent label-based slicing
time series-functionality

integrated handling of missing data

pandas joJe!

simar = pd.read_table('WANA 2006008 Algeciras.txt',
delim _whitespace= ,
parse_dates= {'date' : [0,1,2,3]},
index col='date', skiprows=/0)

print(simar)

HmO Tmo02
date
1996-01-14 03:00:00
1996-01-14 06:00:00
1996-01-14 09:00:00
1996-01-14 12:00:00
1996-01-14 15:00:00

1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4

1996-12-31 21:00:00 1.4

2823 rows x 14 columns

read table(. . .)
Read general delimited file into DataFrame.

e delim whitespace: boolean, default False. Specifies whether or not whitespace (e.g.' ' or
") will be used as the sep.

e parse dates:boolean or list of ints or names or list of lists or dict, default False boolean.
dict, e.g.{foo’:[1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

e index col:intor sequence or False, default None. Column to use as the row labels of the
DataFrame.

o skiprows: list-like or integer, default None. Line numbers to skip (0-indexed) or number of
lines to skip (int) at the start of the file

e header:intor list of ints, default ‘infer. Row number(s) to use as the column names, and the
start of the data. Default behavior is as if set to O if no names passed, otherwise None.

out = simar['HmO@'] # selecting a single column

print(out)

date

1996-01-14 03:00:00
1996-01-14 06:00:00
1996-01-14 09:00:00
1996-01-14 12:00:00
1996-01-14 15:00:00

1996-12-31 09:00:00
1996-12-31 12:00:00
1996-12-31 15:00:00
1996-12-31 18:00:00
1996-12-31 21:00:00
Name: HmO, dtype: float

out = simar[['HmO@', 'Tp']] # selecting several columns using a list

print(out)

date
1996-01-14 03:00:00
1996-01-14 06:00:00
1996-01-14 09:00:00
1996-01-14 12:00:00

1996-01-14 15:00:00

1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4

1996-12-31 21:00:00 1.4

2823 rows x 2 columns

out = simar.iloc[@:3] # selecting rows by position

print(out)

HmO TmO02 .. VelV DirV

date

1996-01-14 03:00:00

1996-01-14 06:00:00
1996-01-14 09:00:00

3 rows x 14 columns

out = simar.loc['1996-01-14 03:00:00'] # selecting rows by label

print(out)

HmO
TmO0 2
Tp
DirM
HmO V

HmO F2

Tm02 F2

DirM F2

VelV

DirV 176.

Name: 1996-01-14 03:00:00, dtype: floaté64

out = simar.describe()

print(out)

HmO Tmo02 ... VelV DirV

count 2823.000000 2823.000000 ... 2823.000000 2823.000000

mean 1.206412 3.432164 ... 0.565604 169.971661
std 0.729701 0.880544 ... 3.607439 92.598314
0.100000 1.300000 ... 0.000000 0.000000

0.700000 2.800000 ... 6.800000 80.000000

1.000000 3.300000 ... 9.600000 191.000000

1.600000 4.000000 ... 12.000000 260.000000

5.200000 7.400000 ... 20.700000 360.000000

8 rows x 14 columns

Vectorization

Arrays enable you to express batch operations on data without writing
any for loops. This is usually called vectorization:

e vectorized code is more concise and easier to read
e fewer lines of code generally means fewer bugs

 the code more closely resembles standard mathematical notation

But:

sometimes it's difficult to move away from the for-loop school of thought

Array manipulation routines
Datetime Support Functions
Discrete Fourier Transform (numpy.fft)
Financial functions

Indexing routines

Linear algebra (numpy.linalg)

Logic functions

Mathematical functions

Random sampling (humpy.random)
Set routines

Sorting, searching, and counting

Statistics

NumPy

Mathematical functions

Trigonometric functions

sin(x)
cos(x)
tan(x)

Sums, products, differences

prod(a)
sum(a)
nanprod(a)
diff(a)

Arithmetic operations
Rounding
Exponents and logarithms

Hyperbolic functions

SciPy

Clustering algorithms (scipy.cluster)

Physical and mathematical constants (scipy.constants)
Fast Fourier Transform routines (scipy. fftpack)
Integration and ordinary differential equation solvers (scipy.integrate)
Interpolation and smoothing splines (scipy.interpolate)
Input and Output (scipy.io)

Linear algebra (scipy. linalg)

N-dimensional image processing (scipy.ndimage)
Orthogonal distance regression (scipy . odr)

Optimization and root-finding routines (scipy.optimize)
Signal processing (scipy.signal)

Sparse matrices and associated routines (scipy. sparse)
Spatial data structures and algorithms (scipy.spatial)
Special functions (scipy.special)

Statistical distributions and functions (scipy.stats)

C/C++ integration (scipy.weave)

matplotlib

matplotlibis a library for making plots in Python. The main component of matplotlib is pylab which allow the user to create
plots with code quite similar to MATLAB figure generating code.matplotlib has its origins in emulating the MATLAB® graphics
commands.

Sympy

SymPy is a Python library for symbolic mathematics.

sympy symbols, 1nit printing

init printing() # pretty printing

X, y = symbols('x v')
expr = X + 2%y
print(expr)

> + 2y

Derivative of sin(x)e”

sympy diff, sin, exp
out = diff(sin(x)*exp(x), X)
print(out)

> e® sin(x) + €” cos(x)
Compute /(e”" sin (z) + €® cos (x)) dz

sympy integrate, cos

out = integrate(exp(x) * sin(x) + exp(x) * cos(x), X)

print(out)

> e” sin(x)

Bibliography

Elegant SciPy: The Art of Scientific Python por Juan Nunez-lglesias, Stéfan van der Walt y otros (2017). ISBN: 9781491922873.
Python for Data Analysis (2nd Edition) por Wes McKinney (2017). ISBN: 1491957662.

Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python por Theodore
Petrou (2017). ISBN: 9781784393878.

MOQOOC (Online Courses)

Python for Data Science (University of California)
Introduction to Python for Data Science (Microsoft)
Intro to Python for Data Science (Datacamp)

MOOC aggregator

https://www.class-central.com/course/edx-python-for-data-science-8209
https://www.edx.org/course/introduction-to-python-for-data-science
https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.class-central.com

