
Scientific Programming with Python
(2018 Edition)

https://gdfa.ugr.es/python

Pedro Magaña (pmagana@ugr.es)

http://gdfa.ugr.es/python
mailto:pmagana@ugr.es

Outline

• Why learn to code?

• Introduction to Python

• Python for science, where to begin?

• Python language

• Scientific libraries

Why learn to code?

Programming: Pick up Python

A powerful programming language with huge
community support.

Jeffrey M. Perkel

04 February 2015

Nature

http://doi.org/10.1038/518125a

http://doi.org/10.1038/518125a

Samples

Introduction to Python

What is Python?

Python is a modern, general-purpose, object-oriented, high-level
programming language.

General characteristics of Python:

• clean and simple language: Easy-to-read and intuitive code,
easy-to-learn minimalistic syntax, maintainability scales well with
size of projects.

• expressive language: Fewer lines of code, fewer bugs, easier to
maintain.

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

Advantages:

• The main advantage is ease of programming, minimizing the time required to
develop, debug and maintain the code.

• Well designed language that encourage many good programming practices:

• Modular and object-oriented programming, good system for packaging and re-use
of code. This often results in more transparent, maintainable and bug-free code.

• Documentation tightly integrated with the code.

• A large standard library, and a large collection of add-on packages.

• Packaging of programs into standard executables, that work on computers
without Python installed.

Disadvantages:

• Since Python is an interpreted and dynamically typed
programming language, the execution of python code can be
slow compared to compiled statically typed programming
languages, such as C/C++ and Fortran.

• Somewhat decentralized, with different environment, packages
and documentation spread out at different places. Can make it
harder to get started.

• Python has a strong position in scientific computing

• Large community of users, easy to find help and documentation.

• Extensive ecosystem of scientific libraries

• NumPy: numerical Python MATLAB matrices and arrays

• SciPy: scientific Python MATLAB toolboxes

• pandas: extends NumPy

• Matplotlib: graphics library

• Sympy: symbolic mathematics library

http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org
http://www.sympy.org

• Scientific (and non-scientific) development environments available

• spyder: MATLAB-like environment

• Jupyter/IPython notebooks: environment for interactive and exploratory
Python

• Visual Studio Code: new Python lightweight environment

• PyCharm: Python environment for developers

• Great performance due to close integration with time-tested and highly
optimized codes written in C/C++ and Fortran

• Readily available and suitable for use on high-performance computing clusters

• No license costs, no unnecessary use of research budget

https://github.com/spyder-ide/spyder
https://jupyter.org
https://code.visualstudio.com
https://www.jetbrains.com/pycharm

Python for science, where to begin?

Why are there two versions of Python?

• At one time, there were a lot of modules not
compatibles with Python 3

• Python 2 is still actively supported. For example,
many Linux distributions and Macs are still using
internally 2.x as default

It's 2018. Why to choose Python 3?

• Differences between Python 2 and 3 are relatively
minor for beginner programmers

• Python 3 brings many improvements over Python 2

• Python 2 end-of-life will be on January 1st, 2020

Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used scientific
libraries in science like NumPy, SciPy, Pandas, matplotlib, etc.
already installed. In the past, it was usually painful to build some of
these packages.

Also, include development environments with advanced editing,
debugging and introspection features.

• Anaconda

• Cross-platform

• Supports Python 2 and 3

• Most widely adopted

• Canopy

• Cross-platform

• Supports Python 2 and 3

• Includes a built-in IDE

• WinPython

• Windows-only platform

• Only supports Python 3

• Python(x,y)

• Windows-only platform

• Only supports Python 2

• Not actively developed

https://www.continuum.io/downloads
https://store.enthought.com/downloads
http://winpython.github.io/#releases
http://python-xy.github.io/downloads.html

Anaconda Navigator

Anaconda Navigator: installing new packages

Spyder

Jupyter notebooks

Visual Studio Code

PyCharm (need to be installed separately from Anaconda)

Editor Learning curve Users Benefits

Spyder pretty short Matlab and R
background

mature, many
features

Jupyter smooth teachers interactive

Visual Studio
Code

moderate scientifics /
developers

code quality

PyCharm steep developers professional
code

Where to look for help?

• Official documentation: http://www.scipy.org/docs.html

• Usually included in development environments as contextual
help:

• Spyder: Ctrl+I (Windows) or Cmd+I (Mac)

• Visual Studio Code: Ctrl+Space (Windows/Mac)

• PyCharm: F1 (Windows/Mac)

• Be careful about code you get on the internet!

http://www.scipy.org/docs.html

Python language

Using Python as a Calculator

2 + 2
> 4

50 - 5*6
> 20

(50 - 5*6) / 4
> 5.0

division always returns a floating point number
8 / 5
> 1.6

Strings

prefix = 'Py'
word = prefix + 'thon'

character in position 0
print(word[0])
> P

characters from position 0 (included) to 4 (excluded)
print(word[0:4])
> Pyth

• 0-based indexing

• half-open range indexing: [a, b)

• print statement to get outputs

• line comments

Lists

empty list
squares = []

lists might contain items of different types
squares = ['cat', 4, 3.2]

negative indices mean count backwards from end of sequence
print(squares[-1])
> 3.2

list concatenation
squares = squares + [81, 'dog']

list functions
squares.remove(3.2) # remove the first ocurrence
squares.append('horse') # concatenation: same as +

print(squares)
> ['cat', 4, 81, 'dog', 'horse']

a = ['a', 'b', 'c']
n = [1, 2, 3]

it is possible to nest lists
(create lists containing other lists)
x = [a, n]

print(x)
> [['a', 'b', 'c'], [1, 2, 3]]

print(x[0])
> ['a', 'b', 'c']

print(x[0][1])
> b

Simple code: Fibonacci series

a, b = 0, 1
while a < 10:
 print(a),
 # the sum of two elements defines the next
 c = a + b
 a = b
 b = c

> 0 1 1 2 3 5 8

• indentation level of statements is
significant

• multiple assignment

if Statements

x = -4

if x < 0:
 x = 0
 print('Negative changed to zero')
elif x == 0:
 print('Zero')
elif x == 1:
 print('Single')
else:
 print('More')

> Negative changed to zero

for Statements

words = ['cat', 'window', 'defenestrate']

for w in words:
 # len returns the number of items of an object.
 print(w, len(w))

> cat 3
> window 6
> defenestrate 12

range(stop): Built-in function to create lists containing arithmetic
progressions.

print range(10)
> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print range(0, 10, 3)
> [0, 3, 6, 9]

print range(0, -10, -1)
> [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

total = 0
for i in range(4): # range(4) = [0, 1, 2, 3]
 total = total + 1 # i is not used
print total

> 4

• Please avoid Matlab-like for statements with range:

for w in range(len(words)):
 print words[w], len(words[w])

Functions

def fibonacci(n):
 """Build a Fibonacci series up to n.

 Args:
 n: upper limit.

 Returns:
 A list with a Fibonacci series up to n.
 """
 f = [] # always initialize the returned value!

 a, b = 0, 1
 while a < n:
 f.append(a)
 # the sum of two elements defines the next
 c = a + b
 a = b
 b = c

 return f

now call the function we just defined:
print fibonacci(1000)

> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: documentation strings (docstrings)

• Python documentation strings (docstrings) provide a convenient way of associating
documentation with Python functions and modules.

• Docstrings can be written following several styles. We use Google Python Style Guide.

• An object's docsting is defined by including a string constant as the first statement in
the function's definition.

• Unlike conventional source code comments the docstring should describe what the
function does, not how.

• All functions should have a docstring.

• This allows to inspect these comments at run time, for instance as an interactive help
system, or export them as HTML, LaTeX, PDF or other formats.

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

Functions: default argument values

def fibonacci(n, s=0):
 """Build a Fibonacci series up to n.

 Args:
 n: upper limit.
 s: lower limit. Default 0.

 Returns:
 A list with a Fibonacci series up to n.
 """
 f = [] # always initialize the returned value!

 a, b = 0, 1
 while a < n:
 if a >= s: # lower limit
 f.append(a)
 # the sum of two elements defines the next
 c = a + b
 a = b
 b = c

 return f

print fibonacci(1000, 15)
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(1000, 0)
> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(1000)
> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: keyword arguments

print fibonacci(1000, 15) # positional arguments
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

print fibonacci(s=15, n=1000) # keyword arguments
> [21, 34, 55, 89, 144, 233, 377, 610, 987]

Functions: importing external functions

import functions # without .py extension

print functions.fibonacci(3)

> [0, 1, 1, 2]

from functions import fibonacci

print fibonacci(3)

> [0, 1, 1, 2]

import functions as f # alias

print f.fibonacci(3)

> [0, 1, 1, 2]

Recommendation
The best way to import libraries is included in their official help

Some examples:

import math
import numpy as np
from scipy import linalg, optimize
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import sympy

Code Style

• Style Guide for Python Code: PEP8.

• Use only English (ASCII) characters for variables, functions and files.

• Name your variables, functions and files consistently: the convention
is to use lowercasewith_underscores.

• We all use single-quoted strings to be consistent. Nevertheless,
single-quoted strings and double-quoted strings are the same. PEP
does not make a recommendation for this, except for function
documentation where tripe-quote strings should be used.

PEP8 exceptions

• Long lines

It is very conservative and requires limiting lines to 79 characters. We use all
lines to a maximum of 119 characters. This is the default behaviour in PyCharm.

• Disable checks in one line

Skip validation in one lines by adding following comment:
nopep8

datetime data type

The datetime module supplies classes for manipulating dates and times. Avoid converting
dates or times to int (datenum or similar).

from datetime import datetime, date, time

Using datetime.combine()
d = date(2005, 7, 14)
t = time(12, 30)
dt1 = datetime.combine(d, t)

print dt1
> 2005-07-14 12:30:00

print dt1.year
> 2005

timedelta([days[, seconds[, microseconds[, milliseconds[,
minutes[, hours[, weeks]]]]]]])

All arguments are optional and default to 0. Arguments may be ints, longs, or
floats, and may be positive or negative.

from datetime import timedelta

dt2 = dt1 + timedelta(hours=5)

print dt2
> 2005-07-14 17:30:00

boolean data type

boolean values are the two constant objects False and True. In
numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1,
respectively.

Nevertheless, other values can also be considered false or true:

• the following values are considered false: 0, '', [], (), {}, None

• all other values are considered true, so objects of many types are
always true

Scientific libraries

Pandas

• fast and efficient Series (1-dimensional) and DataFrame (2-
dimensional) heterogeneous objects for data manipulation with
integrated indexing

• tools for reading and writing data from different formats: CSV and
text files, Microsoft Excel, SQL databases, HDF5...

• intelligent label-based slicing

• time series-functionality

• integrated handling of missing data

import pandas as pd

simar = pd.read_table('WANA_2006008_Algeciras.txt',
 delim_whitespace=True,
 parse_dates= {'date' : [0,1,2,3]},
 index_col='date', skiprows=70)

print(simar)

read_table(...)

Read general delimited file into DataFrame.

• delim_whitespace: boolean, default False. Specifies whether or not whitespace (e.g. ' ' or
' ') will be used as the sep.

• parse_dates: boolean or list of ints or names or list of lists or dict, default False boolean.
dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

• index_col: int or sequence or False, default None. Column to use as the row labels of the
DataFrame.

• skiprows: list-like or integer, default None. Line numbers to skip (0-indexed) or number of
lines to skip (int) at the start of the file

• header: int or list of ints, default ‘infer’. Row number(s) to use as the column names, and the
start of the data. Default behavior is as if set to 0 if no names passed, otherwise None.

out = simar['Hm0'] # selecting a single column

print(out)

out = simar[['Hm0', 'Tp']] # selecting several columns using a list

print(out)

out = simar.iloc[0:3] # selecting rows by position

print(out)

out = simar.loc['1996-01-14 03:00:00'] # selecting rows by label

print(out)

out = simar.describe()

print(out)

Vectorization

Arrays enable you to express batch operations on data without writing
any for loops. This is usually called vectorization:

• vectorized code is more concise and easier to read

• fewer lines of code generally means fewer bugs

• the code more closely resembles standard mathematical notation

But:

sometimes it's difficult to move away from the for-loop school of thought

NumPy

• Array manipulation routines

• Datetime Support Functions

• Discrete Fourier Transform (numpy.fft)

• Financial functions

• Indexing routines

• Linear algebra (numpy.linalg)

• Logic functions

• Mathematical functions

• Random sampling (numpy.random)

• Set routines

• Sorting, searching, and counting

• Statistics

Mathematical functions

• Trigonometric functions

sin(x)
cos(x)
tan(x)

• Sums, products, differences

prod(a)
sum(a)
nanprod(a)
diff(a)

• Arithmetic operations

• Rounding

• Exponents and logarithms

• Hyperbolic functions

SciPy

• Clustering algorithms (scipy.cluster)

• Physical and mathematical constants (scipy.constants)

• Fast Fourier Transform routines (scipy.fftpack)

• Integration and ordinary differential equation solvers (scipy.integrate)

• Interpolation and smoothing splines (scipy.interpolate)

• Input and Output (scipy.io)

• Linear algebra (scipy.linalg)

• N-dimensional image processing (scipy.ndimage)

• Orthogonal distance regression (scipy.odr)

• Optimization and root-finding routines (scipy.optimize)

• Signal processing (scipy.signal)

• Sparse matrices and associated routines (scipy.sparse)

• Spatial data structures and algorithms (scipy.spatial)

• Special functions (scipy.special)

• Statistical distributions and functions (scipy.stats)

• C/C++ integration (scipy.weave)

matplotlib

matplotlib is a library for making plots in Python. The main component of matplotlib is pylab which allow the user to create
plots with code quite similar to MATLAB figure generating code. matplotlib has its origins in emulating the MATLAB® graphics
commands.

Sympy

SymPy is a Python library for symbolic mathematics.

from sympy import symbols, init_printing

init_printing() # pretty printing

x, y = symbols('x y')
expr = x + 2*y

print(expr)

>

Derivative of

from sympy import diff, sin, exp

out = diff(sin(x)*exp(x), x)

print(out)

>

Compute

from sympy import integrate, cos

out = integrate(exp(x) * sin(x) + exp(x) * cos(x), x)

print(out)

>

Bibliography

• Elegant SciPy: The Art of Scientific Python por Juan Nunez-Iglesias, Stéfan van der Walt y otros (2017). ISBN: 9781491922873.

• Python for Data Analysis (2nd Edition) por Wes McKinney (2017). ISBN: 1491957662.

• Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python por Theodore
Petrou (2017). ISBN: 9781784393878.

MOOC (Online Courses)

• Python for Data Science (University of California)

• Introduction to Python for Data Science (Microsoft)

• Intro to Python for Data Science (Datacamp)

• MOOC aggregator

https://www.class-central.com/course/edx-python-for-data-science-8209
https://www.edx.org/course/introduction-to-python-for-data-science
https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.class-central.com

