Contents

Section 1

1. **Introduction, General Framework and Organization of the ROM 1.1**
 1.1 General Framework
 1.1.1 Ports of general interest, current legislation
 1.1.2 Public domain, service zone, urban structure of the port
 1.1.3 Port Planning: Analysis and Documents
 1.1.4 Investment projects and port construction
 1.1.5 Objectives of the ROM Program and MEIPOR

1.2 Layout of the harbor area and breakwaters

1.3 Tasks and milestones in a breakwater project design

1.4 Classification of construction projects and development levels
 1.4.1 Development levels of the breakwater project
 1.4.2 Objects and activities, depending on the development level of the project

1.5 Contents and organization of the ROM 1.1 in sections
 1.5.1 Organization of the ROM 1.1

1.6 Relation with other ROM recommendations, instructions, and standards
Section 2

2 Specific Project Bases ... 47

2.1 General approach to breakwater planning and design 47

2.2 Spatial and temporal organization of the project 49

2.2.1 Temporal organization: project phases 49

2.2.2 Spatial organization: subsets .. 51

2.3 Subset performance according to construction states 53

2.3.1 Sample and event space .. 53

2.3.2 Failure and stoppage modes .. 53

2.3.3 Complete set of modes .. 55

2.3.4 Event spaces and component diagrams 55

2.4 Characterization of the evolution of damage 57

2.4.1 Conceptual model of the temporal progress of the level of cumulative damage 59

2.4.2 Curves of the mean cumulative damage 61

2.4.3 Trajectory of cumulative damage in a loading cycle 66

2.4.4 Time dependency of the probability model of cumulative damage .. 68

2.4.5 Temporal progress of other cumulative variables 72

2.4.6 Operational stoppage levels and temporal evolution of the operational stoppage 74

2.5 Failure probability at an advanced damage level 75

2.5.1 Conceptions for breakwater design 76

2.5.2 Indicators of the temporal evolution of reliability 78

2.6 Analysis of the spatial evolution of the damage 82

2.6.1 Triggering and propagation trees 82

2.6.2 Decision tree .. 83

2.7 Identification of project factors and critical components 84

2.8 Variant in the conception and design of a breakwater 86

Section 3

3 Procedure for breakwater projects 91

3.1 Conception of the structure and design sequence 91

3.1.1 Tools for the conception of the breakwater 92
3.1.2 Logical sequence of activities ... 94

3.2 Typology and selection criteria ... 97

3.2.1 Description of a typology .. 98

3.2.2 Environmental and technical factors affecting the selection of breakwater typologies ... 99

3.2.3 Economic factors for the selection of breakwater typologies 101

3.3 Breakwater performance and the configuration of diagrams 101

3.3.1 Component diagrams for safety purposes 101

3.3.2 Component diagrams for operationality purposes 107

3.4 Principal failure and stoppage modes in a breakwater 110

3.4.1 Subset with a straight alignment ... 110

3.4.2 Subsets with non-straight alignments and transitions 114

3.4.3 Principal failure modes caused by other agents at the breakwater site 116

3.4.4 Failure modes in the construction, maintenance and repair phases 117

3.4.5 Stoppage modes related to the activities of the harbor area 117

3.5 Joint probability distribution of failure and stoppage in the subset 118

3.5.1 Selection of principal and non-principal modes 118

3.6 Triggering and propagation trees and the propagation of failure or stoppage 119

3.6.1 Design for safety purposes (extreme work and operating conditions) 120

3.6.2 Design for operational purposes (normal work and operating conditions) 125

3.6.3 Design for post-exceptional work and operating conditions 125

3.7 Design of the evolution of damage and repair strategies 125

3.7.1 Elaboration of repair strategies .. 126

3.7.2 Decision tree for selecting repair strategies 127

3.8 Organization of the construction, processes, and resources 129

3.8.1 Preliminary studies ... 129

3.8.2 Description of construction subphases and procedures 130

3.8.3 Planning of the construction strategy ... 130
Section 4

4 Verification of the breakwater in a project phase
4.1 Objectives and requirements of a breakwater project in the ROM Program
4.1.1 Nature of the subset in a project phase
4.2 General verification procedure
4.2.1 Evaluation of the behavior of a mode
4.2.2 Verification equation: concept and formulation
4.2.3 Integrated verification of the principal modes of a subsystem
4.2.4 Verification methods
4.3 Verification of the project phase requirements
4.3.1 Spatial and temporal scales for the verification of project requirements
4.3.2 Recommendations for verification with Level I methods
4.3.3 Recommendations for verification with Level II and III methods
4.3.4 Verification of exceptional work and operating conditions, WOC
4.4 Verification methods and project development stage
4.4.1 Verification methods, depending on the project development stage
4.4.2 Working hypotheses and simplifications, depending on the stage of project development
4.5 Sensitivity analysis according to the project factors

Section 5

5 Evaluation of costs, optimization, and risk level
5.1 Context of cost evaluation in Spain
5.2 Cost-evaluation objectives and the dual optimization system
5.2.1 Capitalization costs of a breakwater
5.3 Construction project costs of a breakwater
5.3.1 Organization of the calculation of the total costs
5.3.2 Cost evaluation procedure
5.3.3 Calculation of the descriptor of the total costs
5.4 Optimization of the sensitivity analysis
5.4.1 Elements that define a technical-economic optimization method
5.4.2 Analytical optimization method .. 187
5.4.3 Sensitivity analysis of the breakwater design 188
5.4.4 Sequence for the optimization and sensitivity analysis 189
5.4.5 Recommended optimization model of the accumulated cost 190
5.5 Analysis of the profitability and risk level of the investment project 191
 5.5.1 ROM 1.1-MEIPOR connectivity .. 191
 5.5.2 Suitability and optimization of the investment project 192
 5.5.3 Dual optimization system and acceptable risk level 193
 5.5.4 Summary of the investment project and its indicators 193
5.6 Exceptional work and operating conditions and analysis of the accident rate 201

Appendices

Symbols and definitions ... 207
Simbolos ... 207
Acronyms .. 212
Definitions ... 213

Observations and examples ... 223

Bibliography ... 225

MEIPOR Financial-Economic Indicators 229

Drafting the ROM 1.1 .. 235
List of Figures

Section 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conditioning factors for harbor infrastructure decision-making</td>
</tr>
<tr>
<td>1.2</td>
<td>Legal entities for the administration of port land area</td>
</tr>
<tr>
<td>1.3</td>
<td>Planning instruments and requirements for environmental impact evaluation</td>
</tr>
<tr>
<td>1.4</td>
<td>Flowchart for the design of basic infrastructure projects</td>
</tr>
<tr>
<td>1.5</td>
<td>Integration of the breakwater in the harbor area</td>
</tr>
<tr>
<td>1.6</td>
<td>Breakwater sections and parameters representing vertical, composite, and sloping breakwaters</td>
</tr>
<tr>
<td>1.7</td>
<td>Organization of a breakwater project</td>
</tr>
<tr>
<td>1.8</td>
<td>Project classification</td>
</tr>
<tr>
<td>1.9</td>
<td>ROM 1.1 levels of project development</td>
</tr>
<tr>
<td>1.10</td>
<td>Table of contents of the ROM 1.1</td>
</tr>
</tbody>
</table>

Section 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Workflow for breakwater design, verification, and optimization, considering the spatial and temporal evolution of modes</td>
</tr>
<tr>
<td>2.2</td>
<td>Hierarchy of the time scales of the project</td>
</tr>
</tbody>
</table>
2.3 Cascade distribution of the performance of a breakwater subset 53
2.4 Event space for a set of three components .. 56
2.5 Typology of component diagrams .. 57
2.6 Diagram that evaluates the cumulative damage and its consequences 58
2.7 State curves of the mean cumulative damage ... 62
2.8 Iso-duration curves, based on the predominant agent and damage 63
2.9 Iso-mean-damage-value curves, based on the predominant agent and the duration .. 64
2.10 Iso-characteristic-value curves of the characteristic agent, based on the duration and cumulative damage .. 65
2.11 Example of cumulative damage in a loading cycle 67
2.12 Iso-value curves of the fitted model ... 67
2.13 Experiments on measured cumulative damage and data fitting 68
2.14 Sequence of states of the characteristic cycle analyzed 69
2.15 Temporal evolution of cumulative damage probability for the two PDFs of initial damage: the first PDF represents a conservative repair strategy, whereas the second PDF represents a riskier repair strategy .. 70
2.16 Temporal evolution of the probability of cumulative damage, considering agent variability .. 72
2.17 Experimental results for the cumulative overtopping volume 74
2.18 The probability density functions (PDFs) of cumulative damage during the structure’s useful life for project designs with and without a repair strategy 78
2.19 Example of a triggering and propagation tree .. 83
2.20 Classification algorithm of the total cost of repairs, depending on the initial repair strategies and their duration .. 85
2.21 Relative importance of the predictors that define the different repair strategies 85
2.22 Interconnection between variants, verification methods, and project classes. 88

Section 3

3.1 General sequence for the conception and design of a breakwater 92
3.2 Tools for the planning and design of the breakwater 94
3.3 Logical sequence for the planning and design of the breakwater 96
3.4 Subsets in the breakwater and harbor extension of the Motril port 97
3.5 Subsystems of a sloping breakwater subset .. 98
3.6 Conventional breakwater typologies ... 99
3.7 (Left panel: diagram of the breakwater subsets. Right panel: diagram of the subsystems in a subset. .. 105
3.8 Diagram of breakwater components ... 105
3.9 Component diagram of each subset ... 106
3.10 Failure tree ([PIANC, 2016]) and component diagram corresponding to excessive wave transmission through a sloping breakwater with a crown wall (ROM 1.1) 109
3.11 Failure tree ([PIANC, 2016]) and component diagram corresponding to excessive wave transmission onto a sloping breakwater with a crown wall (ROM 1.1) . . 109
3.12 Principal elements and modes, organized by subsystems in a sloping breakwater 110
3.13 Triggering and propagation trees in the transition and head subsets 121
3.14 Triggering and propagation tree of the failure affecting the subsystems in the following subsets: breakwater land connection, secondary alignment, and transition. This is a consequence of the deformations and movements of the foundations and soil. .. 122
3.15 Triggering and propagation tree of the failure affecting the subsystems of the following subsets: breakwater land connection, secondary alignment, and transition. This is a consequence of the erosion and displacement of the unit pieces of the outer perimeter. .. 123
3.16 Triggering and propagation tree of the failure in subsystems of the principal alignment as a consequence of the deformations and movements in the foundation and soil .. 124
3.17 Triggering and propagation trees of the failure between subsystems of the main alignment as a consequence of the erosion and displacement of the unit pieces of the outer perimeter. .. 124
3.18 Example of a decision tree ... 128
3.19 Example of decision strategies ... 129

Section 4

4.1 Relations between spatial and temporal scales for the verification of a breakwater 148
4.2 Diagram of the structure ... 154
4.3 Diagram of the hydrodynamic variables of the study 155
4.4 Time series of the free surface and force in the regions defined and the total force on the structure ... 156
4.5 Cumulative distribution functions of the free surface, wave heights, and wave periods in defined regions ... 156
4.6 Probability density and cumulative distribution functions of the total force on the structure ... 157
4.7 Zero up-crossings in the time series of the total force and (landward) positive peaks and (seaward) negative peaks in each of them ... 158
4.8 Cumulative distribution function of the landward force peaks and seaward force peaks ... 159
4.9 Cumulative distribution functions of the maximum wave height values and the values of the maximum landward and seaward forces in each simulation . . 160
Section 5

5.1 Calculation sequence of the descriptor of the total construction and dismantling cost 178
5.2 Calculation sequence of the descriptor of the total repair cost 179
5.3 Calculation of the descriptor of the total cost of exploitation 180
5.4 Characterization of climate agents at the site and typology of the sloping breakwater ... 181
5.5 Diagram of the input data necessary to calculate the repair costs with a Monte Carlo numerical simulation 182
5.6 Example of a triggering and propagation tree of failure propagation 183
5.7 Fit parameters of the power curve of cumulative damage for the failure mode, erosion of the toe berm 183
5.8 Boxplots with the accumulated repair costs in euros over a five-year period for the failure mode, erosion of the toe berm 184
5.9 Fit parameters of the power curve of the repairs for the failure mode, toe berm erosion ... 185
5.10 Sequence of tasks of the optimization process of the design of a breakwater 190
5.11 Workflow of the example ... 194
5.12 Sketch of berths and dimensions ... 195
5.13 Service levels compared to average annual productivity ... 195
5.14 Variation in total costs in relation to the design damage level ... 196
5.15 Temporal evolution of fulfillment probabilities, based on decision-making ... 197
5.16 Probability density function of the repair costs for a design that envisages Iribarren-level damage ... 198
5.17 Probability density function of the IFPR for the three cases considered ... 199
5.18 Density function of the IFPR of the Operator for the three cases considered ... 199
5.19 Probability density function of the IEPR for the three cases considered ... 200
5.20 Results of the sensitivity analysis for optimistic and pessimistic scenarios ... 201
5.21 Flow chart of the interconnection of the three instruments ... 203
List of Tables

Section 1

<table>
<thead>
<tr>
<th>1.1</th>
<th>Summary table of preliminary studies</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Summary of the study of alternatives and solutions</td>
<td>34</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary table of the blueprint</td>
<td>36</td>
</tr>
<tr>
<td>1.4</td>
<td>Indicative values for technical personnel, qualifications, and estimated number of work hours in the construction project (Spain)</td>
<td>43</td>
</tr>
</tbody>
</table>

Section 4

<table>
<thead>
<tr>
<th>4.1</th>
<th>Minimum useful life based on the ERI</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Maximum joint probability in the in-service phase</td>
<td>135</td>
</tr>
<tr>
<td>4.3</td>
<td>Minimum operationality in the in-service phase</td>
<td>138</td>
</tr>
<tr>
<td>4.4</td>
<td>Average number of annual stoppages, based on the OSERI</td>
<td>138</td>
</tr>
<tr>
<td>4.5</td>
<td>Maximum probable duration of a stoppage based on the OERI and OSERI</td>
<td>138</td>
</tr>
<tr>
<td>4.6</td>
<td>Recommended resolution based on the general nature of the subset</td>
<td>161</td>
</tr>
</tbody>
</table>